You're viewing version 2.10 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
ML Commons API
Table of contents
- Model access control considerations
- Training the model
- Getting model information
- Registering a model
- Deploying a model
- Undeploying a model
- Path and HTTP methods
- Example: Undeploying model from all ML nodes
- Response: Undeploying a model from all ML nodes
- Example: Undeploying specific models from specific nodes
- Response: Undeploying specific models from specific nodes
- Response: Undeploying all models from specific nodes
- Example: Undeploying specific models from all nodes
- Response: Undeploying specific models from all nodes
- Searching for a model
- Deleting a model
- Profile
- Predict
- Train and predict
- Getting task information
- Searching for a task
- Deleting a task
- Stats
- Execute
The ML Commons API lets you train machine learning (ML) algorithms synchronously and asynchronously, make predictions with that trained model, and train and predict with the same dataset.
To train tasks through the API, three inputs are required:
- Algorithm name: Must be one of a FunctionName. This determines what algorithm the ML Engine runs. To add a new function, see How To Add a New Function.
- Model hyperparameters: Adjust these parameters to improve model accuracy.
- Input data: The data that trains the ML model, or applies the ML models to predictions. You can input data in two ways, query against your index or use a data frame.
Model access control considerations
For clusters with model access control enabled, users can perform API operations on models in model groups with specified access levels as follows:
public
model group: Any user.restricted
model group: Only the model owner or users who share at least one backend role with the model group.private
model group: Only the model owner.
For clusters with model access control disabled, any user can perform API operations on models in any model group.
Admin users can perform API operations for models in any model group.
For more information, see Model access control.
Training the model
The train API operation trains a model based on a selected algorithm. Training can occur both synchronously and asynchronously.
Request
The following examples use the k-means algorithm to train index data.
Train with k-means synchronously
POST /_plugins/_ml/_train/kmeans
{
"parameters": {
"centroids": 3,
"iterations": 10,
"distance_type": "COSINE"
},
"input_query": {
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
"size": 10000
},
"input_index": [
"iris_data"
]
}
Train with k-means asynchronously
POST /_plugins/_ml/_train/kmeans?async=true
{
"parameters": {
"centroids": 3,
"iterations": 10,
"distance_type": "COSINE"
},
"input_query": {
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
"size": 10000
},
"input_index": [
"iris_data"
]
}
Response
Synchronous
For synchronous responses, the API returns the model_id
, which can be used to get or delete a model.
{
"model_id" : "lblVmX8BO5w8y8RaYYvN",
"status" : "COMPLETED"
}
Asynchronous
For asynchronous responses, the API returns the task_id
, which can be used to get or delete a task.
{
"task_id" : "lrlamX8BO5w8y8Ra2otd",
"status" : "CREATED"
}
Getting model information
You can retrieve model information using the model_id
.
For information about user access for this API, see Model access control considerations.
Path and HTTP methods
GET /_plugins/_ml/models/<model-id>
The response contains the following model information:
{
"name" : "all-MiniLM-L6-v2_onnx",
"algorithm" : "TEXT_EMBEDDING",
"version" : "1",
"model_format" : "TORCH_SCRIPT",
"model_state" : "LOADED",
"model_content_size_in_bytes" : 83408741,
"model_content_hash_value" : "9376c2ebd7c83f99ec2526323786c348d2382e6d86576f750c89ea544d6bbb14",
"model_config" : {
"model_type" : "bert",
"embedding_dimension" : 384,
"framework_type" : "SENTENCE_TRANSFORMERS",
"all_config" : """{"_name_or_path":"nreimers/MiniLM-L6-H384-uncased","architectures":["BertModel"],"attention_probs_dropout_prob":0.1,"gradient_checkpointing":false,"hidden_act":"gelu","hidden_dropout_prob":0.1,"hidden_size":384,"initializer_range":0.02,"intermediate_size":1536,"layer_norm_eps":1e-12,"max_position_embeddings":512,"model_type":"bert","num_attention_heads":12,"num_hidden_layers":6,"pad_token_id":0,"position_embedding_type":"absolute","transformers_version":"4.8.2","type_vocab_size":2,"use_cache":true,"vocab_size":30522}"""
},
"created_time" : 1665961344044,
"last_uploaded_time" : 1665961373000,
"last_loaded_time" : 1665961815959,
"total_chunks" : 9
}
Registering a model
All versions of a particular model are held in a model group. You can either register a model group before registering a model to the group or register a first version of a model, thereby creating the group. Each model group name in the cluster must be globally unique.
If you are registering the first version of a model without first registering the model group, a new model group is created automatically with the following name and access level:
- Name: The new model group will have the same name as the model. Because the model group name must be unique, ensure that your model name does not have the same name as any model groups in the cluster.
- Access level: The access level for the new model group is determined using the
access_mode
,backend_roles
, andadd_all_backend_roles
parameters that you pass in the request. If you provide none of the three parameters, the new model group will beprivate
if model access control is enabled on your cluster andpublic
if model access control is disabled. The newly registered model is the first model version assigned to that model group.
Once a model group is created, provide its model_group_id
to register a new model version to the model group. In this case, the model name does not need to be unique.
If you’re using pretrained models provided by OpenSearch, we recommend that you first register a model group with a unique name for these models. Then register the pretrained models as versions to that model group. This ensures that every model group has a globally unique model group name.
For information about user access for this API, see Model access control considerations.
If the model is more than 10 MB in size, ML Commons splits it into smaller chunks and saves those chunks in the model’s index.
Path and HTTP methods
POST /_plugins/_ml/models/_register
Request fields
All request fields are required.
Field | Data type | Description |
---|---|---|
name | String | The model’s name. |
version | Integer | The model’s version number. |
model_format | String | The portable format of the model file. Currently only supports TORCH_SCRIPT . |
model_group_id | String | The model group ID of the model group to register this model to. |
model_content_hash_value | String | The model content hash generated using the SHA-256 hashing algorithm. |
model_config | JSON object | The model’s configuration, including the model_type , embedding_dimension , and framework_type . all_config is an optional JSON string that contains all model configurations. |
url | String | The URL that contains the model. |
Example
The following example request registers a version 1.0.0
of an NLP sentence transformation model named all-MiniLM-L6-v2
.
POST /_plugins/_ml/models/_register
{
"name": "all-MiniLM-L6-v2",
"version": "1.0.0",
"description": "test model",
"model_format": "TORCH_SCRIPT",
"model_group_id": "FTNlQ4gBYW0Qyy5ZoxfR",
"model_content_hash_value": "c15f0d2e62d872be5b5bc6c84d2e0f4921541e29fefbef51d59cc10a8ae30e0f",
"model_config": {
"model_type": "bert",
"embedding_dimension": 384,
"framework_type": "sentence_transformers",
"all_config": "{\"_name_or_path\":\"nreimers/MiniLM-L6-H384-uncased\",\"architectures\":[\"BertModel\"],\"attention_probs_dropout_prob\":0.1,\"gradient_checkpointing\":false,\"hidden_act\":\"gelu\",\"hidden_dropout_prob\":0.1,\"hidden_size\":384,\"initializer_range\":0.02,\"intermediate_size\":1536,\"layer_norm_eps\":1e-12,\"max_position_embeddings\":512,\"model_type\":\"bert\",\"num_attention_heads\":12,\"num_hidden_layers\":6,\"pad_token_id\":0,\"position_embedding_type\":\"absolute\",\"transformers_version\":\"4.8.2\",\"type_vocab_size\":2,\"use_cache\":true,\"vocab_size\":30522}"
},
"url": "https://artifacts.opensearch.org/models/ml-models/huggingface/sentence-transformers/all-MiniLM-L6-v2/1.0.1/torch_script/sentence-transformers_all-MiniLM-L6-v2-1.0.1-torch_script.zip"
}
Response
OpenSearch responds with the task_id
and task status
.
{
"task_id" : "ew8I44MBhyWuIwnfvDIH",
"status" : "CREATED"
}
To see the status of your model registration and retrieve the model ID created for the new model version, pass the task_id
as a path parameter to the Tasks API:
GET /_plugins/_ml/tasks/<task_id>
The response contains the model ID of the model version:
{
"model_id": "Qr1YbogBYOqeeqR7sI9L",
"task_type": "DEPLOY_MODEL",
"function_name": "TEXT_EMBEDDING",
"state": "COMPLETED",
"worker_node": [
"N77RInqjTSq_UaLh1k0BUg"
],
"create_time": 1685478486057,
"last_update_time": 1685478491090,
"is_async": true
}
Deploying a model
The deploy model operation reads the model’s chunks from the model index and then creates an instance of the model to cache into memory. This operation requires the model_id
.
For information about user access for this API, see Model access control considerations.
Path and HTTP methods
POST /_plugins/_ml/models/<model_id>/_deploy
Example: Deploying to all available ML nodes
In this example request, OpenSearch deploys the model to any available OpenSearch ML node:
POST /_plugins/_ml/models/WWQI44MBbzI2oUKAvNUt/_deploy
Example: Deploying to a specific node
If you want to reserve the memory of other ML nodes within your cluster, you can deploy your model to a specific node(s) by specifying the node_ids
in the request body:
POST /_plugins/_ml/models/WWQI44MBbzI2oUKAvNUt/_deploy
{
"node_ids": ["4PLK7KJWReyX0oWKnBA8nA"]
}
Response
{
"task_id" : "hA8P44MBhyWuIwnfvTKP",
"status" : "DEPLOYING"
}
Undeploying a model
To undeploy a model from memory, use the undeploy operation.
For information about user access for this API, see Model access control considerations.
Path and HTTP methods
POST /_plugins/_ml/models/<model_id>/_undeploy
Example: Undeploying model from all ML nodes
POST /_plugins/_ml/models/MGqJhYMBbbh0ushjm8p_/_undeploy
Response: Undeploying a model from all ML nodes
{
"s5JwjZRqTY6nOT0EvFwVdA": {
"stats": {
"MGqJhYMBbbh0ushjm8p_": "UNDEPLOYED"
}
}
}
Example: Undeploying specific models from specific nodes
POST /_plugins/_ml/models/_undeploy
{
"node_ids": ["sv7-3CbwQW-4PiIsDOfLxQ"],
"model_ids": ["KDo2ZYQB-v9VEDwdjkZ4"]
}
Response: Undeploying specific models from specific nodes
{
"sv7-3CbwQW-4PiIsDOfLxQ" : {
"stats" : {
"KDo2ZYQB-v9VEDwdjkZ4" : "UNDEPLOYED"
}
}
}
Response: Undeploying all models from specific nodes
{
"sv7-3CbwQW-4PiIsDOfLxQ" : {
"stats" : {
"KDo2ZYQB-v9VEDwdjkZ4" : "UNDEPLOYED",
"-8o8ZYQBvrLMaN0vtwzN" : "UNDEPLOYED"
}
}
}
Example: Undeploying specific models from all nodes
{
"model_ids": ["KDo2ZYQB-v9VEDwdjkZ4"]
}
Response: Undeploying specific models from all nodes
{
"sv7-3CbwQW-4PiIsDOfLxQ" : {
"stats" : {
"KDo2ZYQB-v9VEDwdjkZ4" : "UNDEPLOYED"
}
}
}
Searching for a model
Use this command to search for models you’ve already created.
The response will contain only those model versions to which you have access. For example, if you send a match all query, model versions for the following model group types will be returned:
- All public model groups in the index.
- Private model groups for which you are the model owner.
- Model groups that share at least one backend role with your backend roles.
For more information, see Model access control.
Path and HTTP methods
POST /_plugins/_ml/models/_search
{query}
Example: Searching for all models
POST /_plugins/_ml/models/_search
{
"query": {
"match_all": {}
},
"size": 1000
}
Example: Searching for models with algorithm “FIT_RCF”
POST /_plugins/_ml/models/_search
{
"query": {
"term": {
"algorithm": {
"value": "FIT_RCF"
}
}
}
}
Response
{
"took" : 8,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 2.4159138,
"hits" : [
{
"_index" : ".plugins-ml-model",
"_id" : "-QkKJX8BvytMh9aUeuLD",
"_version" : 1,
"_seq_no" : 12,
"_primary_term" : 15,
"_score" : 2.4159138,
"_source" : {
"name" : "FIT_RCF",
"version" : 1,
"content" : "xxx",
"algorithm" : "FIT_RCF"
}
},
{
"_index" : ".plugins-ml-model",
"_id" : "OxkvHn8BNJ65KnIpck8x",
"_version" : 1,
"_seq_no" : 2,
"_primary_term" : 8,
"_score" : 2.4159138,
"_source" : {
"name" : "FIT_RCF",
"version" : 1,
"content" : "xxx",
"algorithm" : "FIT_RCF"
}
}
]
}
}
Deleting a model
Deletes a model based on the model_id
.
When you delete the last model version in a model group, that model group is automatically deleted from the index.
For information about user access for this API, see Model access control considerations.
Path and HTTP methods
DELETE /_plugins/_ml/models/<model_id>
The API returns the following:
{
"_index" : ".plugins-ml-model",
"_id" : "MzcIJX8BA7mbufL6DOwl",
"_version" : 2,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 2,
"failed" : 0
},
"_seq_no" : 27,
"_primary_term" : 18
}
Profile
The profile operation returns runtime information about ML tasks and models. The profile operation can help debug model issues at runtime.
The number of requests returned
By default, the Profile API monitors the last 100 requests. To change the number of monitoring requests, update the following cluster setting:
PUT _cluster/settings
{
"persistent" : {
"plugins.ml_commons.monitoring_request_count" : 1000000
}
}
To clear all monitoring requests, set plugins.ml_commons.monitoring_request_count
to 0
.
Path and HTTP methods
GET /_plugins/_ml/profile
GET /_plugins/_ml/profile/models
GET /_plugins/_ml/profile/tasks
Path parameters
Parameter | Data type | Description |
---|---|---|
model_id | String | Returns runtime data for a specific model. You can string together multiple model_id s to return multiple model profiles. |
tasks | String | Returns runtime data for a specific task. You can string together multiple task_id s to return multiple task profiles. |
Request fields
All profile body request fields are optional.
Field | Data type | Description |
---|---|---|
node_ids | String | Returns all tasks and profiles from a specific node. |
model_ids | String | Returns runtime data for a specific model. You can string together multiple model IDs to return multiple model profiles. |
task_ids | String | Returns runtime data for a specific task. You can string together multiple task IDs to return multiple task profiles. |
return_all_tasks | Boolean | Determines whether or not a request returns all tasks. When set to false , task profiles are left out of the response. |
return_all_models | Boolean | Determines whether or not a profile request returns all models. When set to false , model profiles are left out of the response. |
Example: Returning all tasks and models on a specific node
GET /_plugins/_ml/profile
{
"node_ids": ["KzONM8c8T4Od-NoUANQNGg"],
"return_all_tasks": true,
"return_all_models": true
}
Response: Returning all tasks and models on a specific node
{
"nodes" : {
"qTduw0FJTrmGrqMrxH0dcA" : { # node id
"models" : {
"WWQI44MBbzI2oUKAvNUt" : { # model id
"worker_nodes" : [ # routing table
"KzONM8c8T4Od-NoUANQNGg"
]
}
}
},
...
"KzONM8c8T4Od-NoUANQNGg" : { # node id
"models" : {
"WWQI44MBbzI2oUKAvNUt" : { # model id
"model_state" : "DEPLOYED", # model status
"predictor" : "org.opensearch.ml.engine.algorithms.text_embedding.TextEmbeddingModel@592814c9",
"worker_nodes" : [ # routing table
"KzONM8c8T4Od-NoUANQNGg"
],
"predict_request_stats" : { # predict request stats on this node
"count" : 2, # total predict requests on this node
"max" : 89.978681, # max latency in milliseconds
"min" : 5.402,
"average" : 47.6903405,
"p50" : 47.6903405,
"p90" : 81.5210129,
"p99" : 89.13291418999998
}
}
}
},
...
}
Predict
ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the model_id
is required.
For information about user access for this API, see Model access control considerations.
Path and HTTP methods
POST /_plugins/_ml/_predict/<algorithm_name>/<model_id>
Request
POST /_plugins/_ml/_predict/kmeans/<model-id>
{
"input_query": {
"_source": ["petal_length_in_cm", "petal_width_in_cm"],
"size": 10000
},
"input_index": [
"iris_data"
]
}
Response
{
"status" : "COMPLETED",
"prediction_result" : {
"column_metas" : [
{
"name" : "ClusterID",
"column_type" : "INTEGER"
}
],
"rows" : [
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 1
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 1
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
}
]
}
Train and predict
Use to train and then immediately predict against the same training dataset. Can only be used with unsupervised learning models and the following algorithms:
- BATCH_RCF
- FIT_RCF
- k-means
Example: Train and predict with indexed data
POST /_plugins/_ml/_train_predict/kmeans
{
"parameters": {
"centroids": 2,
"iterations": 10,
"distance_type": "COSINE"
},
"input_query": {
"query": {
"bool": {
"filter": [
{
"range": {
"k1": {
"gte": 0
}
}
}
]
}
},
"size": 10
},
"input_index": [
"test_data"
]
}
Example: Train and predict with data directly
POST /_plugins/_ml/_train_predict/kmeans
{
"parameters": {
"centroids": 2,
"iterations": 1,
"distance_type": "EUCLIDEAN"
},
"input_data": {
"column_metas": [
{
"name": "k1",
"column_type": "DOUBLE"
},
{
"name": "k2",
"column_type": "DOUBLE"
}
],
"rows": [
{
"values": [
{
"column_type": "DOUBLE",
"value": 1.00
},
{
"column_type": "DOUBLE",
"value": 2.00
}
]
},
{
"values": [
{
"column_type": "DOUBLE",
"value": 1.00
},
{
"column_type": "DOUBLE",
"value": 4.00
}
]
},
{
"values": [
{
"column_type": "DOUBLE",
"value": 1.00
},
{
"column_type": "DOUBLE",
"value": 0.00
}
]
},
{
"values": [
{
"column_type": "DOUBLE",
"value": 10.00
},
{
"column_type": "DOUBLE",
"value": 2.00
}
]
},
{
"values": [
{
"column_type": "DOUBLE",
"value": 10.00
},
{
"column_type": "DOUBLE",
"value": 4.00
}
]
},
{
"values": [
{
"column_type": "DOUBLE",
"value": 10.00
},
{
"column_type": "DOUBLE",
"value": 0.00
}
]
}
]
}
}
Response
{
"status" : "COMPLETED",
"prediction_result" : {
"column_metas" : [
{
"name" : "ClusterID",
"column_type" : "INTEGER"
}
],
"rows" : [
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 1
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 1
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 1
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
},
{
"values" : [
{
"column_type" : "INTEGER",
"value" : 0
}
]
}
]
}
}
Getting task information
You can retrieve information about a task using the task_id.
GET /_plugins/_ml/tasks/<task_id>
The response includes information about the task.
{
"model_id" : "l7lamX8BO5w8y8Ra2oty",
"task_type" : "TRAINING",
"function_name" : "KMEANS",
"state" : "COMPLETED",
"input_type" : "SEARCH_QUERY",
"worker_node" : "54xOe0w8Qjyze00UuLDfdA",
"create_time" : 1647545342556,
"last_update_time" : 1647545342587,
"is_async" : true
}
Searching for a task
Search tasks based on parameters indicated in the request body.
GET /_plugins/_ml/tasks/_search
{query body}
Example: Search task which function_name
is KMEANS
GET /_plugins/_ml/tasks/_search
{
"query": {
"bool": {
"filter": [
{
"term": {
"function_name": "KMEANS"
}
}
]
}
}
}
Response
{
"took" : 12,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : 0.0,
"hits" : [
{
"_index" : ".plugins-ml-task",
"_id" : "_wnLJ38BvytMh9aUi-Ia",
"_version" : 4,
"_seq_no" : 29,
"_primary_term" : 4,
"_score" : 0.0,
"_source" : {
"last_update_time" : 1645640125267,
"create_time" : 1645640125209,
"is_async" : true,
"function_name" : "KMEANS",
"input_type" : "SEARCH_QUERY",
"worker_node" : "jjqFrlW7QWmni1tRnb_7Dg",
"state" : "COMPLETED",
"model_id" : "AAnLJ38BvytMh9aUi-M2",
"task_type" : "TRAINING"
}
},
{
"_index" : ".plugins-ml-task",
"_id" : "wwRRLX8BydmmU1x6I-AI",
"_version" : 3,
"_seq_no" : 38,
"_primary_term" : 7,
"_score" : 0.0,
"_source" : {
"last_update_time" : 1645732766656,
"create_time" : 1645732766472,
"is_async" : true,
"function_name" : "KMEANS",
"input_type" : "SEARCH_QUERY",
"worker_node" : "A_IiqoloTDK01uZvCjREaA",
"state" : "COMPLETED",
"model_id" : "xARRLX8BydmmU1x6I-CG",
"task_type" : "TRAINING"
}
}
]
}
}
Deleting a task
Delete a task based on the task_id.
ML Commons does not check the task status when running the Delete
request. There is a risk that a currently running task could be deleted before the task completes. To check the status of a task, run GET /_plugins/_ml/tasks/<task_id>
before task deletion.
DELETE /_plugins/_ml/tasks/{task_id}
The API returns the following:
{
"_index" : ".plugins-ml-task",
"_id" : "xQRYLX8BydmmU1x6nuD3",
"_version" : 4,
"result" : "deleted",
"_shards" : {
"total" : 2,
"successful" : 2,
"failed" : 0
},
"_seq_no" : 42,
"_primary_term" : 7
}
Stats
Get statistics related to the number of tasks.
To receive all stats, use:
GET /_plugins/_ml/stats
To receive stats for a specific node, use:
GET /_plugins/_ml/<nodeId>/stats/
To receive stats for a specific node and return a specified stat, use:
GET /_plugins/_ml/<nodeId>/stats/<stat>
To receive information on a specific stat from all nodes, use:
GET /_plugins/_ml/stats/<stat>
Example: Get all stats
GET /_plugins/_ml/stats
Response
{
"zbduvgCCSOeu6cfbQhTpnQ" : {
"ml_executing_task_count" : 0
},
"54xOe0w8Qjyze00UuLDfdA" : {
"ml_executing_task_count" : 0
},
"UJiykI7bTKiCpR-rqLYHyw" : {
"ml_executing_task_count" : 0
},
"zj2_NgIbTP-StNlGZJlxdg" : {
"ml_executing_task_count" : 0
},
"jjqFrlW7QWmni1tRnb_7Dg" : {
"ml_executing_task_count" : 0
},
"3pSSjl5PSVqzv5-hBdFqyA" : {
"ml_executing_task_count" : 0
},
"A_IiqoloTDK01uZvCjREaA" : {
"ml_executing_task_count" : 0
}
}
Execute
Some algorithms, such as Localization, don’t require trained models. You can run no-model-based algorithms using the execute
API.
POST _plugins/_ml/_execute/<algorithm_name>
Example: Execute localization
The following example uses the Localization algorithm to find subset-level information for aggregate data (for example, aggregated over time) that demonstrates the activity of interest, such as spikes, drops, changes, or anomalies.
POST /_plugins/_ml/_execute/anomaly_localization
{
"index_name": "rca-index",
"attribute_field_names": [
"attribute"
],
"aggregations": [
{
"sum": {
"sum": {
"field": "value"
}
}
}
],
"time_field_name": "timestamp",
"start_time": 1620630000000,
"end_time": 1621234800000,
"min_time_interval": 86400000,
"num_outputs": 10
}
Upon execution, the API returns the following:
"results" : [
{
"name" : "sum",
"result" : {
"buckets" : [
{
"start_time" : 1620630000000,
"end_time" : 1620716400000,
"overall_aggregate_value" : 65.0
},
{
"start_time" : 1620716400000,
"end_time" : 1620802800000,
"overall_aggregate_value" : 75.0,
"entities" : [
{
"key" : [
"attr0"
],
"contribution_value" : 1.0,
"base_value" : 2.0,
"new_value" : 3.0
},
{
"key" : [
"attr1"
],
"contribution_value" : 1.0,
"base_value" : 3.0,
"new_value" : 4.0
},
{
"key" : [
"attr2"
],
"contribution_value" : 1.0,
"base_value" : 4.0,
"new_value" : 5.0
},
{
"key" : [
"attr3"
],
"contribution_value" : 1.0,
"base_value" : 5.0,
"new_value" : 6.0
},
{
"key" : [
"attr4"
],
"contribution_value" : 1.0,
"base_value" : 6.0,
"new_value" : 7.0
},
{
"key" : [
"attr5"
],
"contribution_value" : 1.0,
"base_value" : 7.0,
"new_value" : 8.0
},
{
"key" : [
"attr6"
],
"contribution_value" : 1.0,
"base_value" : 8.0,
"new_value" : 9.0
},
{
"key" : [
"attr7"
],
"contribution_value" : 1.0,
"base_value" : 9.0,
"new_value" : 10.0
},
{
"key" : [
"attr8"
],
"contribution_value" : 1.0,
"base_value" : 10.0,
"new_value" : 11.0
},
{
"key" : [
"attr9"
],
"contribution_value" : 1.0,
"base_value" : 11.0,
"new_value" : 12.0
}
]
},
...
]
}
}
]
}