Link Search Menu Expand Document Documentation Menu

You're viewing version 2.12 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

Register an agent

Introduced 2.12

This is an experimental feature and is not recommended for use in a production environment. For updates on the progress of the feature or if you want to leave feedback, see the associated GitHub issue.

Use this API to register an agent.

Agents may be of the following types:

  • Flow agent
  • Conversational flow agent
  • Conversational agent

For more information about agents, see Agents and tools.

Path and HTTP methods

POST /_plugins/_ml/agents/_register

Request fields

The following table lists the available request fields.

Field Data type Required/Optional Agent type Description
name String Required All The agent name.
type String Required All The agent type. Valid values are flow, conversational_flow, and conversational. For more information, see Agents.
description String Optional All A description of the agent.
tools Array Optional All A list of tools for the agent to execute.
app_type String Optional All Specifies an optional agent category. You can then perform operations on all agents in the category. For example, you can delete all messages for RAG agents.
memory.type String Optional conversational_flow, conversational Specifies where to store the conversational memory. Currently, the only supported type is conversation_index (store the memory in a conversational system index).
llm.model_id String Required conversational The model ID of the LLM to which to send questions.
llm.parameters.response_filter String Required conversational The pattern for parsing the LLM response. For each LLM, you need to provide the field where the response is located. For example, for the Anthropic Claude model, the response is located in the completion field, so the pattern is $.completion. For OpenAI models, the pattern is $.choices[0].message.content.
llm.parameters.max_iteration Integer Optional conversational The maximum number of messages to send to the LLM. Default is 3.

The tools array contains a list of tools for the agent. Each tool contains the following fields.

Field Data type Required/Optional Description
name String Optional The tool name. The tool name defaults to the type parameter value. If you need to include multiple tools of the same type in an agent, specify different names for the tools.
type String Required The tool type. For a list of supported tools, see Tools.
parameters Object Optional The parameters for this tool. The parameters are highly dependent on the tool type. You can find information about specific tool types in Tools.

Example request: Flow agent

POST /_plugins/_ml/agents/_register
{
  "name": "Test_Agent_For_RAG",
  "type": "flow",
  "description": "this is a test agent",
  "tools": [
    {
      "name": "vector_tool",
      "type": "VectorDBTool",
      "parameters": {
        "model_id": "zBRyYIsBls05QaITo5ex",
        "index": "my_test_data",
        "embedding_field": "embedding",
        "source_field": [
          "text"
        ],
        "input": "${parameters.question}"
      }
    },
    {
      "type": "MLModelTool",
      "description": "A general tool to answer any question",
      "parameters": {
        "model_id": "NWR9YIsBUysqmzBdifVJ",
        "prompt": "\n\nHuman:You are a professional data analyst. You will always answer question based on the given context first. If the answer is not directly shown in the context, you will analyze the data and find the answer. If you don't know the answer, just say don't know. \n\n Context:\n${parameters.vector_tool.output}\n\nHuman:${parameters.question}\n\nAssistant:"
      }
    }
  ]
}

Example request: Conversational flow agent

POST /_plugins/_ml/agents/_register
{
  "name": "population data analysis agent",
  "type": "conversational_flow",
  "description": "This is a demo agent for population data analysis",
  "app_type": "rag",
  "memory": {
    "type": "conversation_index"
  },
  "tools": [
    {
      "type": "VectorDBTool",
      "name": "population_knowledge_base",
      "parameters": {
        "model_id": "your_text_embedding_model_id",
        "index": "test_population_data",
        "embedding_field": "population_description_embedding",
        "source_field": [
          "population_description"
        ],
        "input": "${parameters.question}"
      }
    },
    {
      "type": "MLModelTool",
      "name": "bedrock_claude_model",
      "description": "A general tool to answer any question",
      "parameters": {
        "model_id": "your_LLM_model_id",
        "prompt": """

Human:You are a professional data analysist. You will always answer question based on the given context first. If the answer is not directly shown in the context, you will analyze the data and find the answer. If you don't know the answer, just say don't know. 

Context:
${parameters.population_knowledge_base.output:-}

${parameters.chat_history:-}

Human:${parameters.question}

Assistant:"""
      }
    }
  ]
}

Example request: Conversational agent

POST /_plugins/_ml/agents/_register
{
  "name": "Test_Agent_For_ReAct_ClaudeV2",
  "type": "conversational",
  "description": "this is a test agent",
  "app_type": "my chatbot",
  "llm": {
    "model_id": "<llm_model_id>",
    "parameters": {
      "max_iteration": 5,
      "stop_when_no_tool_found": true,
      "response_filter": "$.completion"
    }
  },
  "memory": {
    "type": "conversation_index"
  },
  "tools": [
    {
      "type": "VectorDBTool",
      "name": "VectorDBTool",
      "description": "A tool to search opensearch index with natural language quesiotn. If you don't know answer for some question, you should always try to search data with this tool. Action Input: <natrual language question>",
      "parameters": {
        "model_id": "<embedding_model_id>",
        "index": "<your_knn_index>",
        "embedding_field": "<embedding_filed_name>",
        "source_field": [
          "<source_filed>"
        ],
        "input": "${parameters.question}"
      }
    },
    {
      "type": "CatIndexTool",
      "name": "RetrieveIndexMetaTool",
      "description": "Use this tool to get OpenSearch index information: (health, status, index, uuid, primary count, replica count, docs.count, docs.deleted, store.size, primary.store.size)."
    }
  ]
}

Example response

OpenSearch responds with an agent ID that you can use to refer to the agent:

{
  "agent_id": "bpV_Zo0BRhAwb9PZqGja"
}
350 characters left

Have a question? .

Want to contribute? or .