You're viewing version 2.13 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
k-NN search with nested fields
Using nested fields in a k-nearest neighbors (k-NN) index, you can store multiple vectors in a single document. For example, if your document consists of various components, you can generate a vector value for each component and store each vector in a nested field.
A k-NN document search operates at the field level. For a document with nested fields, OpenSearch examines only the vector nearest to the query vector to decide whether to include the document in the results. For example, consider an index containing documents A
and B
. Document A
is represented by vectors A1
and A2
, and document B
is represented by vector B1
. Further, the similarity order for a query Q is A1
, A2
, B1
. If you search using query Q with a k value of 2, the search will return both documents A
and B
instead of only document A
.
Note that in the case of an approximate search, the results are approximations and not exact matches.
k-NN search with nested fields is supported by the HNSW algorithm for the Lucene and Faiss engines.
Indexing and searching nested fields
To use k-NN search with nested fields, you must create a k-NN index by setting index.knn
to true
. Create a nested field by setting its type
to nested
and specify one or more fields of the knn_vector
data type within the nested field. In this example, the knn_vector
field my_vector
is nested inside the nested_field
field:
PUT my-knn-index-1
{
"settings": {
"index": {
"knn": true
}
},
"mappings": {
"properties": {
"nested_field": {
"type": "nested",
"properties": {
"my_vector": {
"type": "knn_vector",
"dimension": 3,
"method": {
"name": "hnsw",
"space_type": "l2",
"engine": "lucene",
"parameters": {
"ef_construction": 100,
"m": 16
}
}
}
}
}
}
}
}
After you create the index, add some data to it:
PUT _bulk?refresh=true
{ "index": { "_index": "my-knn-index-1", "_id": "1" } }
{"nested_field":[{"my_vector":[1,1,1]},{"my_vector":[2,2,2]},{"my_vector":[3,3,3]}]}
{ "index": { "_index": "my-knn-index-1", "_id": "2" } }
{"nested_field":[{"my_vector":[10,10,10]},{"my_vector":[20,20,20]},{"my_vector":[30,30,30]}]}
Then run a k-NN search on the data by using the knn
query type:
GET my-knn-index-1/_search
{
"query": {
"nested": {
"path": "nested_field",
"query": {
"knn": {
"nested_field.my_vector": {
"vector": [1,1,1],
"k": 2
}
}
}
}
}
}
Even though all three vectors nearest to the query vector are in document 1, the query returns both documents 1 and 2 because k is set to 2:
{
"took": 23,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 1,
"hits": [
{
"_index": "my-knn-index-1",
"_id": "1",
"_score": 1,
"_source": {
"nested_field": [
{
"my_vector": [
1,
1,
1
]
},
{
"my_vector": [
2,
2,
2
]
},
{
"my_vector": [
3,
3,
3
]
}
]
}
},
{
"_index": "my-knn-index-1",
"_id": "2",
"_score": 0.0040983604,
"_source": {
"nested_field": [
{
"my_vector": [
10,
10,
10
]
},
{
"my_vector": [
20,
20,
20
]
},
{
"my_vector": [
30,
30,
30
]
}
]
}
}
]
}
}
k-NN search with filtering on nested fields
You can apply a filter to a k-NN search with nested fields. A filter can be applied to either a top-level field or a field inside a nested field.
The following example applies a filter to a top-level field.
First, create a k-NN index with a nested field:
PUT my-knn-index-1
{
"settings": {
"index": {
"knn": true
}
},
"mappings": {
"properties": {
"nested_field": {
"type": "nested",
"properties": {
"my_vector": {
"type": "knn_vector",
"dimension": 3,
"method": {
"name": "hnsw",
"space_type": "l2",
"engine": "lucene",
"parameters": {
"ef_construction": 100,
"m": 16
}
}
}
}
}
}
}
}
After you create the index, add some data to it:
PUT _bulk?refresh=true
{ "index": { "_index": "my-knn-index-1", "_id": "1" } }
{"parking": false, "nested_field":[{"my_vector":[1,1,1]},{"my_vector":[2,2,2]},{"my_vector":[3,3,3]}]}
{ "index": { "_index": "my-knn-index-1", "_id": "2" } }
{"parking": true, "nested_field":[{"my_vector":[10,10,10]},{"my_vector":[20,20,20]},{"my_vector":[30,30,30]}]}
{ "index": { "_index": "my-knn-index-1", "_id": "3" } }
{"parking": true, "nested_field":[{"my_vector":[100,100,100]},{"my_vector":[200,200,200]},{"my_vector":[300,300,300]}]}
Then run a k-NN search on the data using the knn
query type with a filter. The following query returns documents whose parking
field is set to true
:
GET my-knn-index-1/_search
{
"query": {
"nested": {
"path": "nested_field",
"query": {
"knn": {
"nested_field.my_vector": {
"vector": [
1,
1,
1
],
"k": 3,
"filter": {
"term": {
"parking": true
}
}
}
}
}
}
}
}
Even though all three vectors nearest to the query vector are in document 1, the query returns documents 2 and 3 because document 1 is filtered out:
{
"took": 10,
"timed_out": false,
"_shards": {
"total": 1,
"successful": 1,
"skipped": 0,
"failed": 0
},
"hits": {
"total": {
"value": 2,
"relation": "eq"
},
"max_score": 0.0040983604,
"hits": [
{
"_index": "my-knn-index-1",
"_id": "2",
"_score": 0.0040983604,
"_source": {
"parking": true,
"nested_field": [
{
"my_vector": [
10,
10,
10
]
},
{
"my_vector": [
20,
20,
20
]
},
{
"my_vector": [
30,
30,
30
]
}
]
}
},
{
"_index": "my-knn-index-1",
"_id": "3",
"_score": 3.400898E-5,
"_source": {
"parking": true,
"nested_field": [
{
"my_vector": [
100,
100,
100
]
},
{
"my_vector": [
200,
200,
200
]
},
{
"my_vector": [
300,
300,
300
]
}
]
}
}
]
}
}