Link Search Menu Expand Document Documentation Menu

You're viewing version 2.16 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

Simulate pipeline

Introduced 1.0

Use the simulate ingest pipeline API operation to run or test the pipeline.

Path and HTTP methods

The following requests simulate the latest ingest pipeline created:

GET _ingest/pipeline/_simulate
POST _ingest/pipeline/_simulate

The following requests simulate a single pipeline based on the pipeline ID:

GET _ingest/pipeline/<pipeline-id>/_simulate
POST _ingest/pipeline/<pipeline-id>/_simulate

Request body fields

The following table lists the request body fields used to run a pipeline.

Field Required Type Description
docs Required Array The documents to be used to test the pipeline.
pipeline Optional Object The pipeline to be simulated. If the pipeline identifier is not included, then the response simulates the latest pipeline created.

The docs field can include subfields listed in the following table.

Field Required Type Description
source Required Object The document’s JSON body.
id Optional String A unique document identifier. The identifier cannot be used elsewhere in the index.
index Optional String The index where the document’s transformed data appears.

Query parameters

The following table lists the query parameters for running a pipeline.

Parameter Type Description
verbose Boolean Verbose mode. Display data output for each processor in the executed pipeline.

Example: Specify a pipeline in the path

POST /_ingest/pipeline/my-pipeline/_simulate
{
  "docs": [
    {
      "_index": "my-index",
      "_id": "1",
      "_source": {
        "grad_year": 2024,
        "graduated": false,
        "name": "John Doe"
      }
    },
    {
      "_index": "my-index",
      "_id": "2",
      "_source": {
        "grad_year": 2025,
        "graduated": false,
        "name": "Jane Doe"
      }
    }
  ]
}

The request returns the following response:

{
  "docs": [
    {
      "doc": {
        "_index": "my-index",
        "_id": "1",
        "_source": {
          "name": "JOHN DOE",
          "grad_year": 2023,
          "graduated": true
        },
        "_ingest": {
          "timestamp": "2023-06-20T23:19:54.635306588Z"
        }
      }
    },
    {
      "doc": {
        "_index": "my-index",
        "_id": "2",
        "_source": {
          "name": "JANE DOE",
          "grad_year": 2023,
          "graduated": true
        },
        "_ingest": {
          "timestamp": "2023-06-20T23:19:54.635746046Z"
        }
      }
    }
  ]
}

Example: Verbose mode

When the previous request is run with the verbose parameter set to true, the response shows the sequence of transformations for each document. For example, for the document with the ID 1, the response contains the results of applying each processor in the pipeline in sequence:

{
  "docs": [
    {
      "processor_results": [
        {
          "processor_type": "set",
          "status": "success",
          "description": "Sets the graduation year to 2023",
          "doc": {
            "_index": "my-index",
            "_id": "1",
            "_source": {
              "name": "John Doe",
              "grad_year": 2023,
              "graduated": false
            },
            "_ingest": {
              "pipeline": "my-pipeline",
              "timestamp": "2023-06-20T23:23:26.656564631Z"
            }
          }
        },
        {
          "processor_type": "set",
          "status": "success",
          "description": "Sets 'graduated' to true",
          "doc": {
            "_index": "my-index",
            "_id": "1",
            "_source": {
              "name": "John Doe",
              "grad_year": 2023,
              "graduated": true
            },
            "_ingest": {
              "pipeline": "my-pipeline",
              "timestamp": "2023-06-20T23:23:26.656564631Z"
            }
          }
        },
        {
          "processor_type": "uppercase",
          "status": "success",
          "doc": {
            "_index": "my-index",
            "_id": "1",
            "_source": {
              "name": "JOHN DOE",
              "grad_year": 2023,
              "graduated": true
            },
            "_ingest": {
              "pipeline": "my-pipeline",
              "timestamp": "2023-06-20T23:23:26.656564631Z"
            }
          }
        }
      ]
    }
  ]
}

Example: Specify a pipeline in the request body

Alternatively, you can specify a pipeline directly in the request body without first creating a pipeline:

POST /_ingest/pipeline/_simulate
{
  "pipeline" :
  {
    "description": "Splits text on white space characters",
    "processors": [
      {
        "csv" : {
          "field" : "name",
          "separator": ",",
          "target_fields": ["last_name", "first_name"],
          "trim": true
        }
      },
      {
      "uppercase": {
        "field": "last_name"
      }
    }
    ]
  },
  "docs": [
    {
      "_index": "second-index",
      "_id": "1",
      "_source": {
        "name": "Doe,John"
      }
    },
    {
      "_index": "second-index",
      "_id": "2",
      "_source": {
        "name": "Doe, Jane"
      }
    }
  ]
}

Response

The request returns the following response:

{
  "docs": [
    {
      "doc": {
        "_index": "second-index",
        "_id": "1",
        "_source": {
          "name": "Doe,John",
          "last_name": "DOE",
          "first_name": "John"
        },
        "_ingest": {
          "timestamp": "2023-08-24T19:20:44.816219673Z"
        }
      }
    },
    {
      "doc": {
        "_index": "second-index",
        "_id": "2",
        "_source": {
          "name": "Doe, Jane",
          "last_name": "DOE",
          "first_name": "Jane"
        },
        "_ingest": {
          "timestamp": "2023-08-24T19:20:44.816492381Z"
        }
      }
    }
  ]
}
350 characters left

Have a question? .

Want to contribute? or .