Link Search Menu Expand Document Documentation Menu

k-NN vector field type

Introduced 1.0

The k-NN plugin introduces a custom data type, the knn_vector, that allows users to ingest their k-NN vectors into an OpenSearch index and perform different kinds of k-NN search. The knn_vector field is highly configurable and can serve many different k-NN workloads. In general, a knn_vector field can be built either by providing a method definition or specifying a model id.

Example

For example, to map my_vector as a knn_vector, use the following request:

PUT test-index
{
  "settings": {
    "index": {
      "knn": true
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "dimension": 3,
        "space_type": "l2",
        "method": {
          "name": "hnsw",
          "engine": "faiss"
        }
      }
    }
  }
}

Vector workload modes

Vector search involves trade-offs between low-latency and low-cost search. Specify the mode mapping parameter of the knn_vector type to indicate which search mode you want to prioritize. The mode dictates the default values for k-NN parameters. You can further fine-tune your index by overriding the default parameter values in the k-NN field mapping.

The following modes are currently supported.

Mode Default engine Description
in_memory (Default) nmslib Prioritizes low-latency search. This mode uses the nmslib engine without any quantization applied. It is configured with the default parameter values for vector search in OpenSearch.
on_disk faiss Prioritizes low-cost vector search while maintaining strong recall. By default, the on_disk mode uses quantization and rescoring to execute a two-pass approach to retrieve the top neighbors. The on_disk mode supports only float vector types.

To create a k-NN index that uses the on_disk mode for low-cost search, send the following request:

PUT test-index
{
  "settings": {
    "index": {
      "knn": true
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "dimension": 3,
        "space_type": "l2",
        "mode": "on_disk"
      }
    }
  }
}

Compression levels

The compression_level mapping parameter selects a quantization encoder that reduces vector memory consumption by the given factor. The following table lists the available compression_level values.

Compression level Supported engines
1x faiss, lucene, and nmslib
2x faiss
4x lucene
8x faiss
16x faiss
32x faiss

For example, if a compression_level of 32x is passed for a float32 index of 768-dimensional vectors, the per-vector memory is reduced from 4 * 768 = 3072 bytes to 3072 / 32 = 846 bytes. Internally, binary quantization (which maps a float to a bit) may be used to achieve this compression.

If you set the compression_level parameter, then you cannot specify an encoder in the method mapping. Compression levels greater than 1x are only supported for float vector types.

The following table lists the default compression_level values for the available workload modes.

Mode Default compression level
in_memory 1x
on_disk 32x

To create a vector field with a compression_level of 16x, specify the compression_level parameter in the mappings. This parameter overrides the default compression level for the on_disk mode from 32x to 16x, producing higher recall and accuracy at the expense of a larger memory footprint:

PUT test-index
{
  "settings": {
    "index": {
      "knn": true
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "dimension": 3,
        "space_type": "l2",
        "mode": "on_disk",
        "compression_level": "16x"
      }
    }
  }
}

Method definitions

Method definitions are used when the underlying approximate k-NN algorithm does not require training. For example, the following knn_vector field specifies that nmslib’s implementation of hnsw should be used for approximate k-NN search. During indexing, nmslib will build the corresponding hnsw segment files.

"my_vector": {
  "type": "knn_vector",
  "dimension": 4,
  "space_type": "l2",
  "method": {
    "name": "hnsw",
    "engine": "nmslib",
    "parameters": {
      "ef_construction": 100,
      "m": 16
    }
  }
}

Model IDs

Model IDs are used when the underlying Approximate k-NN algorithm requires a training step. As a prerequisite, the model must be created with the Train API. The model contains the information needed to initialize the native library segment files.

"my_vector": {
  "type": "knn_vector",
  "model_id": "my-model"
}

However, if you intend to use Painless scripting or a k-NN score script, you only need to pass the dimension.

"my_vector": {
   "type": "knn_vector",
   "dimension": 128
 }

Byte vectors

By default, k-NN vectors are float vectors, in which each dimension is 4 bytes. If you want to save storage space, you can use byte vectors with the faiss or lucene engine. In a byte vector, each dimension is a signed 8-bit integer in the [-128, 127] range.

Byte vectors are supported only for the lucene and faiss engines. They are not supported for the nmslib engine.

In k-NN benchmarking tests, the use of byte rather than float vectors resulted in a significant reduction in storage and memory usage as well as improved indexing throughput and reduced query latency. Additionally, precision on recall was not greatly affected (note that recall can depend on various factors, such as the quantization technique and data distribution).

When using byte vectors, expect some loss of precision in the recall compared to using float vectors. Byte vectors are useful in large-scale applications and use cases that prioritize a reduced memory footprint in exchange for a minimal loss of recall.

When using byte vectors with the faiss engine, we recommend using SIMD optimization, which helps to significantly reduce search latencies and improve indexing throughput.

Introduced in k-NN plugin version 2.9, the optional data_type parameter defines the data type of a vector. The default value of this parameter is float.

To use a byte vector, set the data_type parameter to byte when creating mappings for an index:

Example: HNSW

The following example creates a byte vector index with the lucene engine and hnsw algorithm:

PUT test-index
{
  "settings": {
    "index": {
      "knn": true,
      "knn.algo_param.ef_search": 100
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "dimension": 3,
        "data_type": "byte",
        "space_type": "l2",
        "method": {
          "name": "hnsw",
          "engine": "lucene",
          "parameters": {
            "ef_construction": 100,
            "m": 16
          }
        }
      }
    }
  }
}

After creating the index, ingest documents as usual. Make sure each dimension in the vector is in the supported [-128, 127] range:

PUT test-index/_doc/1
{
  "my_vector": [-126, 28, 127]
}

PUT test-index/_doc/2
{
  "my_vector": [100, -128, 0]
}

When querying, be sure to use a byte vector:

GET test-index/_search
{
  "size": 2,
  "query": {
    "knn": {
      "my_vector": {
        "vector": [26, -120, 99],
        "k": 2
      }
    }
  }
}

Example: IVF

The ivf method requires a training step that creates and trains the model used to initialize the native library index during segment creation. For more information, see Building a k-NN index from a model.

First, create an index that will contain byte vector training data. Specify the faiss engine and ivf algorithm and make sure that the dimension matches the dimension of the model you want to create:

PUT train-index
{
  "mappings": {
    "properties": {
      "train-field": {
        "type": "knn_vector",
        "dimension": 4,
        "data_type": "byte"
      }
    }
  }
}

First, ingest training data containing byte vectors into the training index:

PUT _bulk
{ "index": { "_index": "train-index", "_id": "1" } }
{ "train-field": [127, 100, 0, -120] }
{ "index": { "_index": "train-index", "_id": "2" } }
{ "train-field": [2, -128, -10, 50] }
{ "index": { "_index": "train-index", "_id": "3" } }
{ "train-field": [13, -100, 5, 126] }
{ "index": { "_index": "train-index", "_id": "4" } }
{ "train-field": [5, 100, -6, -125] }

Then, create and train the model named byte-vector-model. The model will be trained using the training data from the train-field in the train-index. Specify the byte data type:

POST _plugins/_knn/models/byte-vector-model/_train
{
  "training_index": "train-index",
  "training_field": "train-field",
  "dimension": 4,
  "description": "model with byte data",
  "data_type": "byte",
  "method": {
    "name": "ivf",
    "engine": "faiss",
    "space_type": "l2",
    "parameters": {
      "nlist": 1,
      "nprobes": 1
    }
  }
}

To check the model training status, call the Get Model API:

GET _plugins/_knn/models/byte-vector-model?filter_path=state

Once the training is complete, the state changes to created.

Next, create an index that will initialize its native library indexes using the trained model:

PUT test-byte-ivf
{
  "settings": {
    "index": {
      "knn": true
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "model_id": "byte-vector-model"
      }
    }
  }
}

Ingest the data containing the byte vectors that you want to search into the created index:

PUT _bulk?refresh=true
{"index": {"_index": "test-byte-ivf", "_id": "1"}}
{"my_vector": [7, 10, 15, -120]}
{"index": {"_index": "test-byte-ivf", "_id": "2"}}
{"my_vector": [10, -100, 120, -108]}
{"index": {"_index": "test-byte-ivf", "_id": "3"}}
{"my_vector": [1, -2, 5, -50]}
{"index": {"_index": "test-byte-ivf", "_id": "4"}}
{"my_vector": [9, -7, 45, -78]}
{"index": {"_index": "test-byte-ivf", "_id": "5"}}
{"my_vector": [80, -70, 127, -128]}

Finally, search the data. Be sure to provide a byte vector in the k-NN vector field:

GET test-byte-ivf/_search
{
  "size": 2,
  "query": {
    "knn": {
      "my_vector": {
        "vector": [100, -120, 50, -45],
        "k": 2
      }
    }
  }
}

Memory estimation

In the best-case scenario, byte vectors require 25% of the memory required by 32-bit vectors.

HNSW memory estimation

The memory required for Hierarchical Navigable Small Worlds (HNSW) is estimated to be 1.1 * (dimension + 8 * m) bytes/vector, where m is the maximum number of bidirectional links created for each element during the construction of the graph.

As an example, assume that you have 1 million vectors with a dimension of 256 and an m of 16. The memory requirement can be estimated as follows:

1.1 * (256 + 8 * 16) * 1,000,000 ~= 0.39 GB

IVF memory estimation

The memory required for IVF is estimated to be 1.1 * ((dimension * num_vectors) + (4 * nlist * dimension)) bytes/vector, where nlist is the number of buckets to partition vectors into.

As an example, assume that you have 1 million vectors with a dimension of 256 and an nlist of 128. The memory requirement can be estimated as follows:

1.1 * ((256 * 1,000,000) + (4 * 128 * 256))  ~= 0.27 GB

Quantization techniques

If your vectors are of the type float, you need to first convert them to the byte type before ingesting the documents. This conversion is accomplished by quantizing the dataset—reducing the precision of its vectors. There are many quantization techniques, such as scalar quantization or product quantization (PQ), which is used in the Faiss engine. The choice of quantization technique depends on the type of data you’re using and can affect the accuracy of recall values. The following sections describe the scalar quantization algorithms that were used to quantize the k-NN benchmarking test data for the L2 and cosine similarity space types. The provided pseudocode is for illustration purposes only.

Scalar quantization for the L2 space type

The following example pseudocode illustrates the scalar quantization technique used for the benchmarking tests on Euclidean datasets with the L2 space type. Euclidean distance is shift invariant. If you shift both \(x\) and \(y\) by the same \(z\), then the distance remains the same (\(\lVert x-y\rVert =\lVert (x-z)-(y-z)\rVert\)).

# Random dataset (Example to create a random dataset)
dataset = np.random.uniform(-300, 300, (100, 10))
# Random query set (Example to create a random queryset)
queryset = np.random.uniform(-350, 350, (100, 10))
# Number of values
B = 256

# INDEXING:
# Get min and max
dataset_min = np.min(dataset)
dataset_max = np.max(dataset)
# Shift coordinates to be non-negative
dataset -= dataset_min
# Normalize into [0, 1]
dataset *= 1. / (dataset_max - dataset_min)
# Bucket into 256 values
dataset = np.floor(dataset * (B - 1)) - int(B / 2)

# QUERYING:
# Clip (if queryset range is out of datset range)
queryset = queryset.clip(dataset_min, dataset_max)
# Shift coordinates to be non-negative
queryset -= dataset_min
# Normalize
queryset *= 1. / (dataset_max - dataset_min)
# Bucket into 256 values
queryset = np.floor(queryset * (B - 1)) - int(B / 2)

Scalar quantization for the cosine similarity space type

The following example pseudocode illustrates the scalar quantization technique used for the benchmarking tests on angular datasets with the cosine similarity space type. Cosine similarity is not shift invariant (\(cos(x, y) \neq cos(x-z, y-z)\)).

The following pseudocode is for positive numbers:

# For Positive Numbers

# INDEXING and QUERYING:

# Get Max of train dataset
max = np.max(dataset)
min = 0
B = 127

# Normalize into [0,1]
val = (val - min) / (max - min)
val = (val * B)

# Get int and fraction values
int_part = floor(val)
frac_part = val - int_part

if 0.5 < frac_part:
 bval = int_part + 1
else:
 bval = int_part

return Byte(bval)

The following pseudocode is for negative numbers:

# For Negative Numbers

# INDEXING and QUERYING:

# Get Min of train dataset
min = 0
max = -np.min(dataset)
B = 128

# Normalize into [0,1]
val = (val - min) / (max - min)
val = (val * B)

# Get int and fraction values
int_part = floor(var)
frac_part = val - int_part

if 0.5 < frac_part:
 bval = int_part + 1
else:
 bval = int_part

return Byte(bval)

Binary vectors

You can reduce memory costs by a factor of 32 by switching from float to binary vectors. Using binary vector indexes can lower operational costs while maintaining high recall performance, making large-scale deployment more economical and efficient.

Binary format is available for the following k-NN search types:

  • Approximate k-NN: Supports binary vectors only for the Faiss engine with the HNSW and IVF algorithms.
  • Script score k-NN: Enables the use of binary vectors in script scoring.
  • Painless extensions: Allows the use of binary vectors with Painless scripting extensions.

Requirements

There are several requirements for using binary vectors in the OpenSearch k-NN plugin:

  • The data_type of the binary vector index must be binary.
  • The space_type of the binary vector index must be hamming.
  • The dimension of the binary vector index must be a multiple of 8.
  • You must convert your binary data into 8-bit signed integers (int8) in the [-128, 127] range. For example, the binary sequence of 8 bits 0, 1, 1, 0, 0, 0, 1, 1 must be converted into its equivalent byte value of 99 to be used as a binary vector input.

Example: HNSW

To create a binary vector index with the Faiss engine and HNSW algorithm, send the following request:

PUT /test-binary-hnsw
{
  "settings": {
    "index": {
      "knn": true
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "dimension": 8,
        "data_type": "binary",
        "space_type": "hamming",
        "method": {
          "name": "hnsw",
          "engine": "faiss"
        }
      }
    }
  }
}

Then ingest some documents containing binary vectors:

PUT _bulk
{"index": {"_index": "test-binary-hnsw", "_id": "1"}}
{"my_vector": [7], "price": 4.4}
{"index": {"_index": "test-binary-hnsw", "_id": "2"}}
{"my_vector": [10], "price": 14.2}
{"index": {"_index": "test-binary-hnsw", "_id": "3"}}
{"my_vector": [15], "price": 19.1}
{"index": {"_index": "test-binary-hnsw", "_id": "4"}}
{"my_vector": [99], "price": 1.2}
{"index": {"_index": "test-binary-hnsw", "_id": "5"}}
{"my_vector": [80], "price": 16.5}

When querying, be sure to use a binary vector:

GET /test-binary-hnsw/_search
{
  "size": 2,
  "query": {
    "knn": {
      "my_vector": {
        "vector": [9],
        "k": 2
      }
    }
  }
}

The response contains the two vectors closest to the query vector:

Response
{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 2,
      "relation": "eq"
    },
    "max_score": 0.5,
    "hits": [
      {
        "_index": "test-binary-hnsw",
        "_id": "2",
        "_score": 0.5,
        "_source": {
          "my_vector": [
            10
          ],
          "price": 14.2
        }
      },
      {
        "_index": "test-binary-hnsw",
        "_id": "5",
        "_score": 0.25,
        "_source": {
          "my_vector": [
            80
          ],
          "price": 16.5
        }
      }
    ]
  }
}

Example: IVF

The IVF method requires a training step that creates and trains the model used to initialize the native library index during segment creation. For more information, see Building a k-NN index from a model.

First, create an index that will contain binary vector training data. Specify the Faiss engine and IVF algorithm and make sure that the dimension matches the dimension of the model you want to create:

PUT train-index
{
  "mappings": {
    "properties": {
      "train-field": {
        "type": "knn_vector",
        "dimension": 8,
        "data_type": "binary"
      }
    }
  }
}

Ingest training data containing binary vectors into the training index:

Bulk ingest request
PUT _bulk
{ "index": { "_index": "train-index", "_id": "1" } }
{ "train-field": [1] }
{ "index": { "_index": "train-index", "_id": "2" } }
{ "train-field": [2] }
{ "index": { "_index": "train-index", "_id": "3" } }
{ "train-field": [3] }
{ "index": { "_index": "train-index", "_id": "4" } }
{ "train-field": [4] }
{ "index": { "_index": "train-index", "_id": "5" } }
{ "train-field": [5] }
{ "index": { "_index": "train-index", "_id": "6" } }
{ "train-field": [6] }
{ "index": { "_index": "train-index", "_id": "7" } }
{ "train-field": [7] }
{ "index": { "_index": "train-index", "_id": "8" } }
{ "train-field": [8] }
{ "index": { "_index": "train-index", "_id": "9" } }
{ "train-field": [9] }
{ "index": { "_index": "train-index", "_id": "10" } }
{ "train-field": [10] }
{ "index": { "_index": "train-index", "_id": "11" } }
{ "train-field": [11] }
{ "index": { "_index": "train-index", "_id": "12" } }
{ "train-field": [12] }
{ "index": { "_index": "train-index", "_id": "13" } }
{ "train-field": [13] }
{ "index": { "_index": "train-index", "_id": "14" } }
{ "train-field": [14] }
{ "index": { "_index": "train-index", "_id": "15" } }
{ "train-field": [15] }
{ "index": { "_index": "train-index", "_id": "16" } }
{ "train-field": [16] }
{ "index": { "_index": "train-index", "_id": "17" } }
{ "train-field": [17] }
{ "index": { "_index": "train-index", "_id": "18" } }
{ "train-field": [18] }
{ "index": { "_index": "train-index", "_id": "19" } }
{ "train-field": [19] }
{ "index": { "_index": "train-index", "_id": "20" } }
{ "train-field": [20] }
{ "index": { "_index": "train-index", "_id": "21" } }
{ "train-field": [21] }
{ "index": { "_index": "train-index", "_id": "22" } }
{ "train-field": [22] }
{ "index": { "_index": "train-index", "_id": "23" } }
{ "train-field": [23] }
{ "index": { "_index": "train-index", "_id": "24" } }
{ "train-field": [24] }
{ "index": { "_index": "train-index", "_id": "25" } }
{ "train-field": [25] }
{ "index": { "_index": "train-index", "_id": "26" } }
{ "train-field": [26] }
{ "index": { "_index": "train-index", "_id": "27" } }
{ "train-field": [27] }
{ "index": { "_index": "train-index", "_id": "28" } }
{ "train-field": [28] }
{ "index": { "_index": "train-index", "_id": "29" } }
{ "train-field": [29] }
{ "index": { "_index": "train-index", "_id": "30" } }
{ "train-field": [30] }
{ "index": { "_index": "train-index", "_id": "31" } }
{ "train-field": [31] }
{ "index": { "_index": "train-index", "_id": "32" } }
{ "train-field": [32] }
{ "index": { "_index": "train-index", "_id": "33" } }
{ "train-field": [33] }
{ "index": { "_index": "train-index", "_id": "34" } }
{ "train-field": [34] }
{ "index": { "_index": "train-index", "_id": "35" } }
{ "train-field": [35] }
{ "index": { "_index": "train-index", "_id": "36" } }
{ "train-field": [36] }
{ "index": { "_index": "train-index", "_id": "37" } }
{ "train-field": [37] }
{ "index": { "_index": "train-index", "_id": "38" } }
{ "train-field": [38] }
{ "index": { "_index": "train-index", "_id": "39" } }
{ "train-field": [39] }
{ "index": { "_index": "train-index", "_id": "40" } }
{ "train-field": [40] }

Then, create and train the model named test-binary-model. The model will be trained using the training data from the train_field in the train-index. Specify the binary data type and hamming space type:

POST _plugins/_knn/models/test-binary-model/_train
{
  "training_index": "train-index",
  "training_field": "train-field",
  "dimension": 8,
  "description": "model with binary data",
  "data_type": "binary",
  "space_type": "hamming",
  "method": {
    "name": "ivf",
    "engine": "faiss",
    "parameters": {
      "nlist": 16,
      "nprobes": 1
    }
  }
}

To check the model training status, call the Get Model API:

GET _plugins/_knn/models/test-binary-model?filter_path=state

Once the training is complete, the state changes to created.

Next, create an index that will initialize its native library indexes using the trained model:

PUT test-binary-ivf
{
  "settings": {
    "index": {
      "knn": true
    }
  },
  "mappings": {
    "properties": {
      "my_vector": {
        "type": "knn_vector",
        "model_id": "test-binary-model"
      }
    }
  }
}

Ingest the data containing the binary vectors that you want to search into the created index:

PUT _bulk?refresh=true
{"index": {"_index": "test-binary-ivf", "_id": "1"}}
{"my_vector": [7], "price": 4.4}
{"index": {"_index": "test-binary-ivf", "_id": "2"}}
{"my_vector": [10], "price": 14.2}
{"index": {"_index": "test-binary-ivf", "_id": "3"}}
{"my_vector": [15], "price": 19.1}
{"index": {"_index": "test-binary-ivf", "_id": "4"}}
{"my_vector": [99], "price": 1.2}
{"index": {"_index": "test-binary-ivf", "_id": "5"}}
{"my_vector": [80], "price": 16.5}

Finally, search the data. Be sure to provide a binary vector in the k-NN vector field:

GET test-binary-ivf/_search
{
  "size": 2,
  "query": {
    "knn": {
      "my_vector": {
        "vector": [8],
        "k": 2
      }
    }
  }
}

The response contains the two vectors closest to the query vector:

Response
GET /_plugins/_knn/models/my-model?filter_path=state
{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 1,
    "successful": 1,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": {
      "value": 2,
      "relation": "eq"
    },
    "max_score": 0.5,
    "hits": [
      {
        "_index": "test-binary-ivf",
        "_id": "2",
        "_score": 0.5,
        "_source": {
          "my_vector": [
            10
          ],
          "price": 14.2
        }
      },
      {
        "_index": "test-binary-ivf",
        "_id": "3",
        "_score": 0.25,
        "_source": {
          "my_vector": [
            15
          ],
          "price": 19.1
        }
      }
    ]
  }
}