You're viewing version 2.17 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
Asynchronous batch ingestion
Introduced 2.17
Use the Asynchronous Batch Ingestion API to ingest data into your OpenSearch cluster from your files on remote file servers, such as Amazon Simple Storage Service (Amazon S3) or OpenAI. For detailed configuration steps, see Asynchronous batch ingestion.
Path and HTTP methods
POST /_plugins/_ml/_batch_ingestion
Request body fields
The following table lists the available request fields.
Field | Data type | Required/Optional | Description |
---|---|---|---|
index_name | String | Required | The index name. |
field_map | Object | Required | Maps fields from the source file to specific fields in an OpenSearch index for ingestion. |
ingest_fields | Array | Optional | Lists fields from the source file that should be ingested directly into the OpenSearch index without any additional mapping. |
credential | Object | Required | Contains the authentication information for accessing external data sources, such as Amazon S3 or OpenAI. |
data_source | Object | Required | Specifies the type and location of the external file(s) from which the data is ingested. |
data_source.type | String | Required | Specifies the type of the external data source. Valid values are s3 and openAI . |
data_source.source | Array | Required | Specifies one or more file locations from which the data is ingested. For s3 , specify the file path to the Amazon S3 bucket (for example, ["s3://offlinebatch/output/sagemaker_batch.json.out"] ). For openAI , specify the file IDs for input or output files (for example, ["file-<your output file id>", "file-<your input file id>", "file-<your other file>"] ). |
Example request: Ingesting a single file
POST /_plugins/_ml/_batch_ingestion
{
"index_name": "my-nlp-index",
"field_map": {
"chapter": "$.content[0]",
"title": "$.content[1]",
"chapter_embedding": "$.SageMakerOutput[0]",
"title_embedding": "$.SageMakerOutput[1]",
"_id": "$.id"
},
"ingest_fields": ["$.id"],
"credential": {
"region": "us-east-1",
"access_key": "<your access key>",
"secret_key": "<your secret key>",
"session_token": "<your session token>"
},
"data_source": {
"type": "s3",
"source": ["s3://offlinebatch/output/sagemaker_batch.json.out"]
}
}
Example request: Ingesting multiple files
POST /_plugins/_ml/_batch_ingestion
{
"index_name": "my-nlp-index-openai",
"field_map": {
"question": "source[1].$.body.input[0]",
"answer": "source[1].$.body.input[1]",
"question_embedding":"source[0].$.response.body.data[0].embedding",
"answer_embedding":"source[0].$.response.body.data[1].embedding",
"_id": ["source[0].$.custom_id", "source[1].$.custom_id"]
},
"ingest_fields": ["source[2].$.custom_field1", "source[2].$.custom_field2"],
"credential": {
"openAI_key": "<you openAI key>"
},
"data_source": {
"type": "openAI",
"source": ["file-<your output file id>", "file-<your input file id>", "file-<your other file>"]
}
}
Example response
{
"task_id": "cbsPlpEBMHcagzGbOQOx",
"task_type": "BATCH_INGEST",
"status": "CREATED"
}