Link Search Menu Expand Document Documentation Menu

You're viewing version 2.18 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

Bengali analyzer

The built-in bengali analyzer can be applied to a text field using the following command:

PUT /bengali-index
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "bengali"
      }
    }
  }
}

Stem exclusion

You can use stem_exclusion with this language analyzer using the following command:

PUT index_with_stem_exclusion_bengali_analyzer
{
  "settings": {
    "analysis": {
      "analyzer": {
        "stem_exclusion_bengali_analyzer": {
          "type": "bengali",
          "stem_exclusion": ["কর্তৃপক্ষ", "অনুমোদন"]
        }
      }
    }
  }
}

Bengali analyzer internals

The bengali analyzer is built using the following components:

  • Tokenizer: standard

  • Token filters:

    • lowercase
    • decimal_digit
    • indic_normalization
    • normalization (Bengali)
    • stop (Bengali)
    • keyword
    • stemmer (Bengali)

Custom Bengali analyzer

You can create a custom Bengali analyzer using the following command:

PUT /bengali-index
{
  "settings": {
    "analysis": {
      "filter": {
        "bengali_stop": {
          "type": "stop",
          "stopwords": "_bengali_"
        },
        "bengali_stemmer": {
          "type": "stemmer",
          "language": "bengali"
        },
        "bengali_keywords": {
          "type":       "keyword_marker",
          "keywords":   [] 
        }
      },
      "analyzer": {
        "bengali_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "decimal_digit",
            "indic_normalization",
            "bengali_normalization",
            "bengali_stop",
            "bengali_keywords",
            "bengali_stemmer"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "bengali_analyzer"
      }
    }
  }
}

Generated tokens

Use the following request to examine the tokens generated using the analyzer:

POST /bengali-index/_analyze
{
  "field": "content",
  "text": "ছাত্ররা বিশ্ববিদ্যালয়ে পড়াশোনা করে। তাদের নম্বরগুলি ১২৩৪৫৬।"
}

The response contains the generated tokens:

{
  "tokens": [
    {"token": "ছাত্র","start_offset": 0,"end_offset": 7,"type": "<ALPHANUM>","position": 0},
    {"token": "বিসসবিদালয়","start_offset": 8,"end_offset": 23,"type": "<ALPHANUM>","position": 1},
    {"token": "পরাসোন","start_offset": 24,"end_offset": 32,"type": "<ALPHANUM>","position": 2},
    {"token": "তা","start_offset": 38,"end_offset": 43,"type": "<ALPHANUM>","position": 4},
    {"token": "নমমর","start_offset": 44,"end_offset": 53,"type": "<ALPHANUM>","position": 5},
    {"token": "123456","start_offset": 54,"end_offset": 60,"type": "<NUM>","position": 6}
  ]
}
350 characters left

Have a question? .

Want to contribute? or .