Link Search Menu Expand Document Documentation Menu

You're viewing version 2.18 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

English analyzer

The built-in english analyzer can be applied to a text field using the following command:

PUT /english-index
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "english"
      }
    }
  }
}

Stem exclusion

You can use stem_exclusion with this language analyzer using the following command:

PUT index_with_stem_exclusion_english_analyzer
{
  "settings": {
    "analysis": {
      "analyzer": {
        "stem_exclusion_english_analyzer": {
          "type": "english",
          "stem_exclusion": ["authority", "authorization"]
        }
      }
    }
  }
}

English analyzer internals

The english analyzer is built using the following components:

  • Tokenizer: standard

  • Token filters:

    • stemmer (possessive_english)
    • lowercase
    • stop (English)
    • keyword
    • stemmer (English)

Custom English analyzer

You can create a custom English analyzer using the following command:

PUT /english-index
{
  "settings": {
    "analysis": {
      "filter": {
        "english_stop": {
          "type": "stop",
          "stopwords": "_english_"
        },
        "english_stemmer": {
          "type": "stemmer",
          "language": "english"
        },
        "english_keywords": {
          "type": "keyword_marker",
          "keywords": []
        },
        "english_possessive_stemmer": {
          "type":       "stemmer",
          "language":   "possessive_english"
        }
      },
      "analyzer": {
        "english_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "english_possessive_stemmer",
            "lowercase",
            "english_stop",
            "english_keywords",
            "english_stemmer"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "english_analyzer"
      }
    }
  }
}

Generated tokens

Use the following request to examine the tokens generated using the analyzer:

POST /english-index/_analyze
{
  "field": "content",
  "text": "The students study in the USA and work at NASA. Their numbers are 123456."
}

The response contains the generated tokens:

{
  "tokens": [
    {"token": "student","start_offset": 4,"end_offset": 12,"type": "<ALPHANUM>","position": 1},
    {"token": "studi","start_offset": 13,"end_offset": 18,"type": "<ALPHANUM>","position": 2},
    {"token": "usa","start_offset": 26,"end_offset": 29,"type": "<ALPHANUM>","position": 5},
    {"token": "work","start_offset": 34,"end_offset": 38,"type": "<ALPHANUM>","position": 7},
    {"token": "nasa","start_offset": 42,"end_offset": 46,"type": "<ALPHANUM>","position": 9},
    {"token": "number","start_offset": 54,"end_offset": 61,"type": "<ALPHANUM>","position": 11},
    {"token": "123456","start_offset": 66,"end_offset": 72,"type": "<NUM>","position": 13}
  ]
}
350 characters left

Have a question? .

Want to contribute? or .