Link Search Menu Expand Document Documentation Menu

You're viewing version 2.18 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

Hindi analyzer

The built-in hindi analyzer can be applied to a text field using the following command:

PUT /hindi-index
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "hindi"
      }
    }
  }
}

Stem exclusion

You can use stem_exclusion with this language analyzer using the following command:

PUT index_with_stem_exclusion_hindi_analyzer
{
  "settings": {
    "analysis": {
      "analyzer": {
        "stem_exclusion_hindi_analyzer": {
          "type": "hindi",
          "stem_exclusion": ["अधिकार", "अनुमोदन"]
        }
      }
    }
  }
}

Hindi analyzer internals

The hindi analyzer is built using the following components:

  • Tokenizer: standard

  • Token filters:

    • lowercase
    • decimal_digit
    • keyword
    • normalization (indic)
    • normalization (Hindi)
    • stop (Hindi)
    • stemmer (Hindi)

Custom Hindi analyzer

You can create a custom Hindi analyzer using the following command:

PUT /hindi-index
{
  "settings": {
    "analysis": {
      "filter": {
        "hindi_stop": {
          "type": "stop",
          "stopwords": "_hindi_"
        },
        "hindi_stemmer": {
          "type": "stemmer",
          "language": "hindi"
        },
        "hindi_keywords": {
          "type": "keyword_marker",
          "keywords": []
        }
      },
      "analyzer": {
        "hindi_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "lowercase",
            "decimal_digit",
            "hindi_keywords",
            "indic_normalization",
            "hindi_normalization",
            "hindi_stop",
            "hindi_stemmer"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "hindi_analyzer"
      }
    }
  }
}

Generated tokens

Use the following request to examine the tokens generated using the analyzer:

POST /hindi-index/_analyze
{
  "field": "content",
  "text": "छात्र भारतीय विश्वविद्यालयों में पढ़ते हैं। उनके नंबर १२३४५६ हैं।"
}

The response contains the generated tokens:

{
  "tokens": [
    {
      "token": "छातर",
      "start_offset": 0,
      "end_offset": 5,
      "type": "<ALPHANUM>",
      "position": 0
    },
    {
      "token": "भारतिय",
      "start_offset": 6,
      "end_offset": 12,
      "type": "<ALPHANUM>",
      "position": 1
    },
    {
      "token": "विशवविदयालय",
      "start_offset": 13,
      "end_offset": 28,
      "type": "<ALPHANUM>",
      "position": 2
    },
    {
      "token": "पढ",
      "start_offset": 33,
      "end_offset": 38,
      "type": "<ALPHANUM>",
      "position": 4
    },
    {
      "token": "नंबर",
      "start_offset": 49,
      "end_offset": 53,
      "type": "<ALPHANUM>",
      "position": 7
    },
    {
      "token": "123456",
      "start_offset": 54,
      "end_offset": 60,
      "type": "<NUM>",
      "position": 8
    }
  ]
}
350 characters left

Have a question? .

Want to contribute? or .