Link Search Menu Expand Document Documentation Menu

You're viewing version 2.18 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

Latvian analyzer

The built-in latvian analyzer can be applied to a text field using the following command:

PUT /latvian-index
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "latvian"
      }
    }
  }
}

Stem exclusion

You can use stem_exclusion with this language analyzer using the following command:

PUT index_with_stem_exclusion_latvian_analyzer
{
  "settings": {
    "analysis": {
      "analyzer": {
        "stem_exclusion_latvian_analyzer": {
          "type": "latvian",
          "stem_exclusion": ["autoritāte", "apstiprinājums"]
        }
      }
    }
  }
}

Latvian analyzer internals

The latvian analyzer is built using the following components:

  • Tokenizer: standard

  • Token filters:

    • lowercase
    • stop (Latvian)
    • keyword
    • stemmer (Latvian)

Custom Latvian analyzer

You can create a custom Latvian analyzer using the following command:

PUT /italian-index
{
  "settings": {
    "analysis": {
      "filter": {
        "italian_stop": {
          "type": "stop",
          "stopwords": "_italian_"
        },
        "italian_elision": {
          "type": "elision",
          "articles": [
                "c", "l", "all", "dall", "dell",
                "nell", "sull", "coll", "pell",
                "gl", "agl", "dagl", "degl", "negl",
                "sugl", "un", "m", "t", "s", "v", "d"
          ],
          "articles_case": true
        },
        "italian_stemmer": {
          "type": "stemmer",
          "language": "light_italian"
        },
        "italian_keywords": {
          "type": "keyword_marker",
          "keywords": []
        }
      },
      "analyzer": {
        "italian_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "italian_elision",
            "lowercase",
            "italian_stop",
            "italian_keywords",
            "italian_stemmer"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "italian_analyzer"
      }
    }
  }
}

Generated tokens

Use the following request to examine the tokens generated using the analyzer:

POST /latvian-index/_analyze
{
  "field": "content",
  "text": "Studenti mācās Latvijas universitātēs. Viņu numuri ir 123456."
}

The response contains the generated tokens:

{
  "tokens": [
    {"token": "student","start_offset": 0,"end_offset": 8,"type": "<ALPHANUM>","position": 0},
    {"token": "māc","start_offset": 9,"end_offset": 14,"type": "<ALPHANUM>","position": 1},
    {"token": "latvij","start_offset": 15,"end_offset": 23,"type": "<ALPHANUM>","position": 2},
    {"token": "universitāt","start_offset": 24,"end_offset": 37,"type": "<ALPHANUM>","position": 3},
    {"token": "vin","start_offset": 39,"end_offset": 43,"type": "<ALPHANUM>","position": 4},
    {"token": "numur","start_offset": 44,"end_offset": 50,"type": "<ALPHANUM>","position": 5},
    {"token": "123456","start_offset": 54,"end_offset": 60,"type": "<NUM>","position": 7}
  ]
}
350 characters left

Have a question? .

Want to contribute? or .