Link Search Menu Expand Document Documentation Menu

You're viewing version 2.18 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

Turkish analyzer

The built-in turkish analyzer can be applied to a text field using the following command:

PUT /turkish-index
{
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "turkish"
      }
    }
  }
}

Stem exclusion

You can use stem_exclusion with this language analyzer using the following command:

PUT index_with_stem_exclusion_turkish_analyzer
{
  "settings": {
    "analysis": {
      "analyzer": {
        "stem_exclusion_turkish_analyzer": {
          "type": "turkish",
          "stem_exclusion": ["otorite", "onay"]
        }
      }
    }
  }
}

Turkish analyzer internals

The turkish analyzer is built using the following components:

  • Tokenizer: standard

  • Token filters:

    • apostrophe
    • lowercase (Turkish)
    • stop (Turkish)
    • keyword
    • stemmer (Turkish)

Custom Turkish analyzer

You can create a custom Turkish analyzer using the following command:

PUT /turkish-index
{
  "settings": {
    "analysis": {
      "filter": {
        "turkish_stop": {
          "type": "stop",
          "stopwords": "_turkish_"
        },
        "turkish_stemmer": {
          "type": "stemmer",
          "language": "turkish"
        },
        "turkish_lowercase": {
          "type":       "lowercase",
          "language":   "turkish"
        },
        "turkish_keywords": {
          "type": "keyword_marker",
          "keywords": []
        }
      },
      "analyzer": {
        "turkish_analyzer": {
          "type": "custom",
          "tokenizer": "standard",
          "filter": [
            "apostrophe",
            "turkish_lowercase",
            "turkish_stop",
            "turkish_keywords",
            "turkish_stemmer"
          ]
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "content": {
        "type": "text",
        "analyzer": "turkish_analyzer"
      }
    }
  }
}

Generated tokens

Use the following request to examine the tokens generated using the analyzer:

POST /turkish-index/_analyze
{
  "field": "content",
  "text": "Öğrenciler Türk üniversitelerinde öğrenim görüyor. Numara 123456."
}

The response contains the generated tokens:

{
  "tokens": [
    {"token": "öğrenci","start_offset": 0,"end_offset": 10,"type": "<ALPHANUM>","position": 0},
    {"token": "türk","start_offset": 11,"end_offset": 15,"type": "<ALPHANUM>","position": 1},
    {"token": "üniversite","start_offset": 16,"end_offset": 33,"type": "<ALPHANUM>","position": 2},
    {"token": "öğre","start_offset": 34,"end_offset": 41,"type": "<ALPHANUM>","position": 3},
    {"token": "görüyor","start_offset": 42,"end_offset": 49,"type": "<ALPHANUM>","position": 4},
    {"token": "numar","start_offset": 51,"end_offset": 57,"type": "<ALPHANUM>","position": 5},
    {"token": "123456","start_offset": 58,"end_offset": 64,"type": "<NUM>","position": 6}
  ]
}
350 characters left

Have a question? .

Want to contribute? or .