You're viewing version 2.6 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
Perform text analysis
The perform text analysis API analyzes a text string and returns the resulting tokens.
If you use the Security plugin, you must have the manage index
privilege. If you simply want to analyze text, you must have the manager cluster
privilege.
Path and HTTP methods
GET /_analyze
GET /{index}/_analyze
POST /_analyze
POST /{index}/_analyze
Although you can issue an analyzer request via both GET
and POST
requests, the two have important distinctions. A GET
request causes data to be cached in the index so that the next time the data is requested, it is retrieved faster. A POST
request sends a string that does not already exist to the analyzer to be compared to data that is already in the index. POST
requests are not cached.
Path parameter
You can include the following optional path parameter in your request.
Parameter | Data type | Description |
---|---|---|
index | String | Index that is used to derive the analyzer. |
Query parameters
You can include the following optional query parameters in your request.
Field | Data type | Description |
---|---|---|
analyzer | String | The name of the analyzer to apply to the text field. The analyzer can be built in or configured in the index.If analyzer is not specified, the analyze API uses the analyzer defined in the mapping of the field field.If the field field is not specified, the analyze API uses the default analyzer for the index.If no index is specified or the index does not have a default analyzer, the analyze API uses the standard analyzer. |
attributes | Array of Strings | Array of token attributes for filtering the output of the explain field. |
char_filter | Array of Strings | Array of character filters for preprocessing characters before the tokenizer field. |
explain | Boolean | If true, causes the response to include token attributes and additional details. Defaults to false . |
field | String | Field for deriving the analyzer. If you specify field , you must also specify the index path parameter. If you specify the analyzer field, it overrides the value of field . If you do not specify field , the analyze API uses the default analyzer for the index. If you do not specify the index field, or the index does not have a default analyzer, the analyze API uses the standard analyzer. |
filter | Array of Strings | Array of token filters to apply after the tokenizer field. |
normalizer | String | Normalizer for converting text into a single token. |
tokenizer | String | Tokenizer for converting the text field into tokens. |
The following query parameter is required.
Field | Data type | Description |
---|---|---|
text | String or Array of Strings | Text to analyze. If you provide an array of strings, the text is analyzed as a multi-value field. |
Example requests
Apply a custom transient analyzer
Derive the analyzer from an index field
Analyze array of text strings
When you pass an array of strings to the text
field, it is analyzed as a multi-value field.
GET /_analyze
{
"analyzer" : "standard",
"text" : ["first array element", "second array element"]
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "first",
"start_offset" : 0,
"end_offset" : 5,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "array",
"start_offset" : 6,
"end_offset" : 11,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "element",
"start_offset" : 12,
"end_offset" : 19,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "second",
"start_offset" : 20,
"end_offset" : 26,
"type" : "<ALPHANUM>",
"position" : 3
},
{
"token" : "array",
"start_offset" : 27,
"end_offset" : 32,
"type" : "<ALPHANUM>",
"position" : 4
},
{
"token" : "element",
"start_offset" : 33,
"end_offset" : 40,
"type" : "<ALPHANUM>",
"position" : 5
}
]
}
Apply a built-in analyzer
If you omit the index
path parameter, you can apply any of the built-in analyzers to the text string.
The following request analyzes text using the standard
built-in analyzer:
GET /_analyze
{
"analyzer" : "standard",
"text" : "OpenSearch text analysis"
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "opensearch",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "text",
"start_offset" : 11,
"end_offset" : 15,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "analysis",
"start_offset" : 16,
"end_offset" : 24,
"type" : "<ALPHANUM>",
"position" : 2
}
]
}
Apply a custom analyzer
You can create your own analyzer and specify it in an analyze request.
In this scenario, a custom analyzer lowercase_ascii_folding
has been created and associated with the books2
index. The analyzer converts text to lowercase and converts non-ASCII characters to ASCII.
The following request applies the custom analyzer to the provided text:
GET /books2/_analyze
{
"analyzer": "lowercase_ascii_folding",
"text" : "Le garçon m'a SUIVI."
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "le",
"start_offset" : 0,
"end_offset" : 2,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "garcon",
"start_offset" : 3,
"end_offset" : 9,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "m'a",
"start_offset" : 10,
"end_offset" : 13,
"type" : "<ALPHANUM>",
"position" : 2
},
{
"token" : "suivi",
"start_offset" : 14,
"end_offset" : 19,
"type" : "<ALPHANUM>",
"position" : 3
}
]
}
Apply a custom transient analyzer
You can build a custom transient analyzer from tokenizers, token filters, or character filters. Use the filter
parameter to specify token filters.
The following request uses the uppercase
character filter to convert the text to uppercase:
GET /_analyze
{
"tokenizer" : "keyword",
"filter" : ["uppercase"],
"text" : "OpenSearch filter"
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "OPENSEARCH FILTER",
"start_offset" : 0,
"end_offset" : 17,
"type" : "word",
"position" : 0
}
]
}
The following request uses the html_strip
filter to remove HTML characters from the text:
GET /_analyze
{
"tokenizer" : "keyword",
"filter" : ["lowercase"],
"char_filter" : ["html_strip"],
"text" : "<b>Leave</b> right now!"
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "leave right now!",
"start_offset" : 3,
"end_offset" : 23,
"type" : "word",
"position" : 0
}
]
}
You can combine filters using an array.
The following request combines a lowercase
translation with a stop
filter that removes the words in the stopwords
array:
GET /_analyze
{
"tokenizer" : "whitespace",
"filter" : ["lowercase", {"type": "stop", "stopwords": [ "to", "in"]}],
"text" : "how to train your dog in five steps"
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "how",
"start_offset" : 0,
"end_offset" : 3,
"type" : "word",
"position" : 0
},
{
"token" : "train",
"start_offset" : 7,
"end_offset" : 12,
"type" : "word",
"position" : 2
},
{
"token" : "your",
"start_offset" : 13,
"end_offset" : 17,
"type" : "word",
"position" : 3
},
{
"token" : "dog",
"start_offset" : 18,
"end_offset" : 21,
"type" : "word",
"position" : 4
},
{
"token" : "five",
"start_offset" : 25,
"end_offset" : 29,
"type" : "word",
"position" : 6
},
{
"token" : "steps",
"start_offset" : 30,
"end_offset" : 35,
"type" : "word",
"position" : 7
}
]
}
Specify an index
You can analyze text using an index’s default analyzer, or you can specify a different analyzer.
The following request analyzes the provided text using the default analyzer associated with the books
index:
GET /books/_analyze
{
"text" : "OpenSearch analyze test"
}
The previous request returns the following fields:
"tokens" : [
{
"token" : "opensearch",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "analyze",
"start_offset" : 11,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "test",
"start_offset" : 19,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 2
}
]
}
The following request analyzes the provided text using the keyword
analyzer, which returns the entire text value as a single token:
GET /books/_analyze
{
"analyzer" : "keyword",
"text" : "OpenSearch analyze test"
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "OpenSearch analyze test",
"start_offset" : 0,
"end_offset" : 23,
"type" : "word",
"position" : 0
}
]
}
Derive the analyzer from an index field
You can pass text and a field in the index. The API looks up the field’s analyzer and uses it to analyze the text.
If the mapping does not exist, the API uses the standard analyzer, which converts all text to lowercase and tokenizes based on white space.
The following request causes the analysis to be based on the mapping for name
:
GET /books2/_analyze
{
"field" : "name",
"text" : "OpenSearch analyze test"
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "opensearch",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "analyze",
"start_offset" : 11,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "test",
"start_offset" : 19,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 2
}
]
}
Specify a normalizer
Instead of using a keyword field, you can use the normalizer associated with the index. A normalizer causes the analysis change to produce a single token.
In this example, the books2
index includes a normalizer called to_lower_fold_ascii
that converts text to lowercase and translates non-ASCII text to ASCII.
The following request applies to_lower_fold_ascii
to the text:
GET /books2/_analyze
{
"normalizer" : "to_lower_fold_ascii",
"text" : "C'est le garçon qui m'a suivi."
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "c'est le garcon qui m'a suivi.",
"start_offset" : 0,
"end_offset" : 30,
"type" : "word",
"position" : 0
}
]
}
You can create a custom transient normalizer with token and character filters.
The following request uses the uppercase
character filter to convert the given text to all uppercase:
GET /_analyze
{
"filter" : ["uppercase"],
"text" : "That is the boy who followed me."
}
The previous request returns the following fields:
{
"tokens" : [
{
"token" : "THAT IS THE BOY WHO FOLLOWED ME.",
"start_offset" : 0,
"end_offset" : 32,
"type" : "word",
"position" : 0
}
]
}
Get token details
You can obtain additional details for all tokens by setting the explain
attribute to true
.
The following request provides detailed token information for the reverse
filter used with the standard
tokenizer:
GET /_analyze
{
"tokenizer" : "standard",
"filter" : ["reverse"],
"text" : "OpenSearch analyze test",
"explain" : true,
"attributes" : ["keyword"]
}
The previous request returns the following fields:
{
"detail" : {
"custom_analyzer" : true,
"charfilters" : [ ],
"tokenizer" : {
"name" : "standard",
"tokens" : [
{
"token" : "OpenSearch",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "analyze",
"start_offset" : 11,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "test",
"start_offset" : 19,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 2
}
]
},
"tokenfilters" : [
{
"name" : "reverse",
"tokens" : [
{
"token" : "hcraeSnepO",
"start_offset" : 0,
"end_offset" : 10,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "ezylana",
"start_offset" : 11,
"end_offset" : 18,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "tset",
"start_offset" : 19,
"end_offset" : 23,
"type" : "<ALPHANUM>",
"position" : 2
}
]
}
]
}
}
Set a token limit
You can set a limit to the number of tokens generated. Setting a lower value reduces a node’s memory usage. The default value is 10000.
The following request limits the tokens to four:
PUT /books2
{
"settings" : {
"index.analyze.max_token_count" : 4
}
}
The preceding request is an index API rather than an analyze API. See DYNAMIC INDEX SETTINGS for additional details.
Response fields
The text analysis endpoints return the following response fields.
Field | Data type | Description |
---|---|---|
tokens | Array | Array of tokens derived from the text . See token object. |
detail | Object | Details about the analysis and each token. Included only when you request token details. See detail object. |
Token object
Field | Data type | Description |
---|---|---|
token | String | The token’s text. |
start_offset | Integer | The token’s starting position within the original text string. Offsets are zero-based. |
end_offset | Integer | The token’s ending position within the original text string. |
type | String | Classification of the token: <ALPHANUM> , <NUM> , and so on. The tokenizer usually sets the type, but some filters define their own types. For example, the synonym filter defines the <SYNONYM> type. |
position | Integer | The token’s position within the tokens array. |
Detail object
Field | Data type | Description |
---|---|---|
custom_analyzer | Boolean | Whether the analyzer applied to the text is custom or built in. |
charfilters | Array | List of character filters applied to the text. |
tokenizer | Object | Name of the tokenizer applied to the text and a list of tokens* with content before the token filters were applied. |
tokenfilters | Array | List of token filters applied to the text. Each token filter includes the filter’s name and a list of tokens* with content after the filters were applied. Token filters are listed in the order they are specified in the request. |
See token object for token field descriptions.