You're viewing version 2.5 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
SQL/PPL API
Use the SQL and PPL API to send queries to the SQL plugin. Use the _sql
endpoint to send queries in SQL, and the _ppl
endpoint to send queries in PPL. For both of these, you can also use the _explain
endpoint to translate your query into OpenSearch domain-specific language (DSL) or to troubleshoot errors.
Table of contents
Query API
Introduced 1.0
Sends an SQL/PPL query to the SQL plugin. You can pass the format for the response as a query parameter.
Query parameters
Parameter | Data Type | Description |
---|---|---|
format | String | The format for the response. The _sql endpoint supports jdbc , csv , raw , and json formats. The _ppl endpoint supports jdbc , csv , and raw formats. Default is jdbc . |
sanitize | Boolean | Specifies whether to escape special characters in the results. See Response formats for more information. Default is true . |
Request fields
Field | Data Type | Description |
---|---|---|
query | String | The query to be executed. Required. |
filter | JSON object | The filter for the results. Optional. |
fetch_size | integer | The number of results to return in one response. Used for paginating results. Default is 1,000. Optional. Only supported for the jdbc response format. |
Example request
POST /_plugins/_sql
{
"query" : "SELECT * FROM accounts"
}
Example response
The response contains the schema and the results:
{
"schema": [
{
"name": "account_number",
"type": "long"
},
{
"name": "firstname",
"type": "text"
},
{
"name": "address",
"type": "text"
},
{
"name": "balance",
"type": "long"
},
{
"name": "gender",
"type": "text"
},
{
"name": "city",
"type": "text"
},
{
"name": "employer",
"type": "text"
},
{
"name": "state",
"type": "text"
},
{
"name": "age",
"type": "long"
},
{
"name": "email",
"type": "text"
},
{
"name": "lastname",
"type": "text"
}
],
"datarows": [
[
1,
"Amber",
"880 Holmes Lane",
39225,
"M",
"Brogan",
"Pyrami",
"IL",
32,
"amberduke@pyrami.com",
"Duke"
],
[
6,
"Hattie",
"671 Bristol Street",
5686,
"M",
"Dante",
"Netagy",
"TN",
36,
"hattiebond@netagy.com",
"Bond"
],
[
13,
"Nanette",
"789 Madison Street",
32838,
"F",
"Nogal",
"Quility",
"VA",
28,
"nanettebates@quility.com",
"Bates"
],
[
18,
"Dale",
"467 Hutchinson Court",
4180,
"M",
"Orick",
null,
"MD",
33,
"daleadams@boink.com",
"Adams"
]
],
"total": 4,
"size": 4,
"status": 200
}
Response fields
Field | Data Type | Description |
---|---|---|
schema | Array | Specifies the field names and types for all fields. |
data_rows | 2D array | An array of results. Each result represents one matching row (document). |
total | Integer | The total number of rows (documents) in the index. |
size | Integer | The number of results to return in one response. |
status | String | The HTTP response status OpenSearch returns after running the query. |
Explain API
The SQL plugin has an explain
feature that shows how a query is executed against OpenSearch, which is useful for debugging and development. A POST request to the _plugins/_sql/_explain
or _plugins/_ppl/_explain
endpoint returns OpenSearch domain-specific language (DSL) in JSON format, explaining the query. You can execute the explain API operation either in command line using curl
or in the Dashboards console, like in the example below.
Sample explain request for an SQL query
POST _plugins/_sql/_explain
{
"query": "SELECT firstname, lastname FROM accounts WHERE age > 20"
}
Sample SQL query explain response
{
"root": {
"name": "ProjectOperator",
"description": {
"fields": "[firstname, lastname]"
},
"children": [
{
"name": "OpenSearchIndexScan",
"description": {
"request": """OpenSearchQueryRequest(indexName=accounts, sourceBuilder={"from":0,"size":200,"timeout":"1m","query":{"range":{"age":{"from":20,"to":null,"include_lower":false,"include_upper":true,"boost":1.0}}},"_source":{"includes":["firstname","lastname"],"excludes":[]},"sort":[{"_doc":{"order":"asc"}}]}, searchDone=false)"""
},
"children": []
}
]
}
}
Sample explain request for a PPL query
POST _plugins/_ppl/_explain
{
"query" : "source=accounts | fields firstname, lastname"
}
Sample PPL query explain response
{
"root": {
"name": "ProjectOperator",
"description": {
"fields": "[firstname, lastname]"
},
"children": [
{
"name": "OpenSearchIndexScan",
"description": {
"request": """OpenSearchQueryRequest(indexName=accounts, sourceBuilder={"from":0,"size":200,"timeout":"1m","_source":{"includes":["firstname","lastname"],"excludes":[]}}, searchDone=false)"""
},
"children": []
}
]
}
}
For queries that require post-processing, the explain
response includes a query plan in addition to the OpenSearch DSL. For those queries that don’t require post processing, you can see a complete DSL.
Paginating results
To get back a paginated response, use the fetch_size
parameter. The value of fetch_size
should be greater than 0. The default value is 1,000. A value of 0 will fall back to a non-paginated response.
The fetch_size
parameter is only supported for the jdbc
response format.
Example
The following request contains an SQL query and specifies to return five results at a time:
POST _plugins/_sql/
{
"fetch_size" : 5,
"query" : "SELECT firstname, lastname FROM accounts WHERE age > 20 ORDER BY state ASC"
}
The response contains all the fields that a query without fetch_size
would contain, and a cursor
field that is used to retrieve subsequent pages of results:
{
"schema": [
{
"name": "firstname",
"type": "text"
},
{
"name": "lastname",
"type": "text"
}
],
"cursor": "d:eyJhIjp7fSwicyI6IkRYRjFaWEo1UVc1a1JtVjBZMmdCQUFBQUFBQUFBQU1XZWpkdFRFRkZUMlpTZEZkeFdsWnJkRlZoYnpaeVVRPT0iLCJjIjpbeyJuYW1lIjoiZmlyc3RuYW1lIiwidHlwZSI6InRleHQifSx7Im5hbWUiOiJsYXN0bmFtZSIsInR5cGUiOiJ0ZXh0In1dLCJmIjo1LCJpIjoiYWNjb3VudHMiLCJsIjo5NTF9",
"total": 956,
"datarows": [
[
"Cherry",
"Carey"
],
[
"Lindsey",
"Hawkins"
],
[
"Sargent",
"Powers"
],
[
"Campos",
"Olsen"
],
[
"Savannah",
"Kirby"
]
],
"size": 5,
"status": 200
}
To fetch subsequent pages, use the cursor
from the previous response:
POST /_plugins/_sql
{
"cursor": "d:eyJhIjp7fSwicyI6IkRYRjFaWEo1UVc1a1JtVjBZMmdCQUFBQUFBQUFBQU1XZWpkdFRFRkZUMlpTZEZkeFdsWnJkRlZoYnpaeVVRPT0iLCJjIjpbeyJuYW1lIjoiZmlyc3RuYW1lIiwidHlwZSI6InRleHQifSx7Im5hbWUiOiJsYXN0bmFtZSIsInR5cGUiOiJ0ZXh0In1dLCJmIjo1LCJpIjoiYWNjb3VudHMiLCJsIjo5NTF9"
}
The next response contains only the datarows
of the results and a new cursor
.
{
"cursor": "d:eyJhIjp7fSwicyI6IkRYRjFaWEo1UVc1a1JtVjBZMmdCQUFBQUFBQUFBQU1XZWpkdFRFRkZUMlpTZEZkeFdsWnJkRlZoYnpaeVVRPT0iLCJjIjpbeyJuYW1lIjoiZmlyc3RuYW1lIiwidHlwZSI6InRleHQifSx7Im5hbWUiOiJsYXN0bmFtZSIsInR5cGUiOiJ0ZXh0In1dLCJmIjo1LCJpIjoiYWNjb3VudHMabcde12345",
"datarows": [
[
"Abbey",
"Karen"
],
[
"Chen",
"Ken"
],
[
"Ani",
"Jade"
],
[
"Peng",
"Hu"
],
[
"John",
"Doe"
]
]
}
The datarows
can have more than the fetch_size
number of records in case nested fields are flattened.
The last page of results has only datarows
and no cursor
. The cursor
context is automatically cleared on the last page.
To explicitly clear the cursor context, use the _plugins/_sql/close
endpoint operation:
POST /_plugins/_sql/close
{
"cursor": "d:eyJhIjp7fSwicyI6IkRYRjFaWEo1UVc1a1JtVjBZMmdCQUFBQUFBQUFBQU1XZWpkdFRFRkZUMlpTZEZkeFdsWnJkRlZoYnpaeVVRPT0iLCJjIjpbeyJuYW1lIjoiZmlyc3RuYW1lIiwidHlwZSI6InRleHQifSx7Im5hbWUiOiJsYXN0bmFtZSIsInR5cGUiOiJ0ZXh0In1dLCJmIjo1LCJpIjoiYWNjb3VudHMiLCJsIjo5NTF9"
}'
The response is an acknowledgement from OpenSearch:
{"succeeded":true}
Filtering results
You can use the filter
parameter to add more conditions to the OpenSearch DSL directly.
The following SQL query returns the names and account balances of all customers. The results are then filtered to contain only those customers with less than $10,000 balance.
POST /_plugins/_sql/
{
"query" : "SELECT firstname, lastname, balance FROM accounts",
"filter" : {
"range" : {
"balance" : {
"lt" : 10000
}
}
}
}
The response contains the matching results:
{
"schema": [
{
"name": "firstname",
"type": "text"
},
{
"name": "lastname",
"type": "text"
},
{
"name": "balance",
"type": "long"
}
],
"total": 2,
"datarows": [
[
"Hattie",
"Bond",
5686
],
[
"Dale",
"Adams",
4180
]
],
"size": 2,
"status": 200
}
You can use the Explain API to see how this query is executed against OpenSearch:
POST /_plugins/_sql/_explain
{
"query" : "SELECT firstname, lastname, balance FROM accounts",
"filter" : {
"range" : {
"balance" : {
"lt" : 10000
}
}
}
}'
The response contains the Boolean query in OpenSearch DSL that corresponds to the query above:
{
"from": 0,
"size": 200,
"query": {
"bool": {
"filter": [{
"bool": {
"filter": [{
"range": {
"balance": {
"from": null,
"to": 10000,
"include_lower": true,
"include_upper": false,
"boost": 1.0
}
}
}],
"adjust_pure_negative": true,
"boost": 1.0
}
}],
"adjust_pure_negative": true,
"boost": 1.0
}
},
"_source": {
"includes": [
"firstname",
"lastname",
"balance"
],
"excludes": []
}
}
Using parameters
You can use the parameters
field to pass parameter values to a prepared SQL query.
The following explain operation uses an SQL query with an age
parameter:
POST /_plugins/_sql/_explain
{
"query": "SELECT * FROM accounts WHERE age = ?",
"parameters": [{
"type": "integer",
"value": 30
}]
}
The response contains the Boolean query in OpenSearch DSL that corresponds to the SQL query above:
{
"from": 0,
"size": 200,
"query": {
"bool": {
"filter": [{
"bool": {
"must": [{
"term": {
"age": {
"value": 30,
"boost": 1.0
}
}
}],
"adjust_pure_negative": true,
"boost": 1.0
}
}],
"adjust_pure_negative": true,
"boost": 1.0
}
}
}