Link Search Menu Expand Document Documentation Menu

You're viewing version 2.5 of the OpenSearch documentation. This version is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.

ML Commons API


Table of contents


The Machine Learning (ML) commons API lets you train ML algorithms synchronously and asynchronously, make predictions with that trained model, and train and predict with the same data set.

In order to train tasks through the API, three inputs are required.

  • Algorithm name: Must be one of a FunctionName. This determines what algorithm the ML Engine runs. To add a new function, see How To Add a New Function.
  • Model hyper parameters: Adjust these parameters to make the model train better.
  • Input data: The data input that trains the ML model, or applies the ML models to predictions. You can input data in two ways, query against your index or use data frame.

«««< HEAD

Train model

=======

aa648390 (Fix spelling error on upgrade page (#3910))

Train model

The train operation trains a model based on a selected algorithm. Training can occur both synchronously and asynchronously.

Request

The following examples use the kmeans algorithm to train index data.

Train with kmeans synchronously

POST /_plugins/_ml/_train/kmeans
{
    "parameters": {
        "centroids": 3,
        "iterations": 10,
        "distance_type": "COSINE"
    },
    "input_query": {
        "_source": ["petal_length_in_cm", "petal_width_in_cm"],
        "size": 10000
    },
    "input_index": [
        "iris_data"
    ]
}

Train with kmeans asynchronously

POST /_plugins/_ml/_train/kmeans?async=true
{
    "parameters": {
        "centroids": 3,
        "iterations": 10,
        "distance_type": "COSINE"
    },
    "input_query": {
        "_source": ["petal_length_in_cm", "petal_width_in_cm"],
        "size": 10000
    },
    "input_index": [
        "iris_data"
    ]
}

Response

Synchronously

For synchronous responses, the API returns the model_id, which can be used to get or delete a model.

{
  "model_id" : "lblVmX8BO5w8y8RaYYvN",
  "status" : "COMPLETED"
}

Asynchronously

For asynchronous responses, the API returns the task_id, which can be used to get or delete a task.

{
  "task_id" : "lrlamX8BO5w8y8Ra2otd",
  "status" : "CREATED"
}

Get model information

You can retrieve information on your model using the model_id.

GET /_plugins/_ml/models/<model-id>

The API returns information on the model, the algorithm used, and the content found within the model.

{
  "name" : "KMEANS",
  "algorithm" : "KMEANS",
  "version" : 1,
  "content" : ""
}

Upload a model

Use the upload operation to upload a custom model to a model index. ML Commons splits the model into smaller chunks and saves those chunks in the model’s index.

POST /_plugins/_ml/models/_upload

Request fields

All request fields are required.

Field Data type Description
name string The name of the model.
version integer The version number of the model.
model_format string The portable format of the model file. Currently only supports TORCH_SCRIPT.
model_config json object The model’s configuration, including the model_type, embedding_dimension, and framework_type. all_config is an optional JSON string which contains all model configurations.
url string The URL which contains the model.

Example

The following example request uploads version 1.0.0 of an NLP sentence transformation model named all-MiniLM-L6-v2.

POST /_plugins/_ml/models/_upload
{
  "name": "all-MiniLM-L6-v2",
  "version": "1.0.0",
  "description": "test model",
  "model_format": "TORCH_SCRIPT",
  "model_config": {
    "model_type": "bert",
    "embedding_dimension": 384,
    "framework_type": "sentence_transformers",
  },
  "url": "https://github.com/opensearch-project/ml-commons/raw/2.x/ml-algorithms/src/test/resources/org/opensearch/ml/engine/algorithms/text_embedding/all-MiniLM-L6-v2_torchscript_sentence-transformer.zip?raw=true"
}

Response

OpenSearch responds with the task_id and task status.

{
  "task_id" : "ew8I44MBhyWuIwnfvDIH", 
  "status" : "CREATED"
}

To see the status of your model upload, enter the task_id into the task API. Use the model_id from the task response once the upload is complete. For example:

{
  "model_id" : "WWQI44MBbzI2oUKAvNUt", 
  "task_type" : "UPLOAD_MODEL",
  "function_name" : "TEXT_EMBEDDING",
  "state" : "COMPLETED",
  "worker_node" : "KzONM8c8T4Od-NoUANQNGg",
  "create_time" : 1665961344003,
  "last_update_time" : 1665961373047,
  "is_async" : true
}

Load model

The load model operation reads the model’s chunks from the model index, then creates an instance of the model to cache into memory. This operation requires the model_id.

POST /_plugins/_ml/models/<model_id>/_load

Example: Load into all available ML nodes

In this example request, OpenSearch loads the model into any available OpenSearch ML node:

POST /_plugins/_ml/models/WWQI44MBbzI2oUKAvNUt/_load

Example: Load into a specific node

If you want to reserve the memory of other ML nodes within your cluster, you can load your model into a specific node(s) by specifying the node_ids in the request body:

POST /_plugins/_ml/models/WWQI44MBbzI2oUKAvNUt/_load
{
    "node_ids": ["4PLK7KJWReyX0oWKnBA8nA"]
}

Response

{
  "task_id" : "hA8P44MBhyWuIwnfvTKP",
  "status" : "CREATED"
}

Unload a model

To unload a model from memory, use the unload operation.

POST /_plugins/_ml/models/<model_id>/_unload

Example: Unload model from all ML nodes

POST /_plugins/_ml/models/MGqJhYMBbbh0ushjm8p_/_unload

Response: Unload model from all ML nodes

{
    "s5JwjZRqTY6nOT0EvFwVdA": {
        "stats": {
            "MGqJhYMBbbh0ushjm8p_": "unloaded"
        }
    }
}

Example: Unload specific models from specific nodes

POST /_plugins/_ml/models/_unload
{
  "node_ids": ["sv7-3CbwQW-4PiIsDOfLxQ"],
  "model_ids": ["KDo2ZYQB-v9VEDwdjkZ4"]
}

Response: Unload specific models from specific nodes

{
  "sv7-3CbwQW-4PiIsDOfLxQ" : {
    "stats" : {
      "KDo2ZYQB-v9VEDwdjkZ4" : "unloaded"
    }
  }
}

Response: Unload all models from specific nodes

{
  "sv7-3CbwQW-4PiIsDOfLxQ" : {
    "stats" : {
      "KDo2ZYQB-v9VEDwdjkZ4" : "unloaded",
      "-8o8ZYQBvrLMaN0vtwzN" : "unloaded"
    }
  }
}

Example: Unload specific models from all nodes

{
  "model_ids": ["KDo2ZYQB-v9VEDwdjkZ4"]
}

Response: Unload specific models from all nodes

{
  "sv7-3CbwQW-4PiIsDOfLxQ" : {
    "stats" : {
      "KDo2ZYQB-v9VEDwdjkZ4" : "unloaded"
    }
  }
}

Search model

Use this command to search models you’ve already created.

POST /_plugins/_ml/models/_search
{query}

Example: Query all models

POST /_plugins/_ml/models/_search
{
  "query": {
    "match_all": {}
  },
  "size": 1000
}

Example: Query models with algorithm “FIT_RCF”

POST /_plugins/_ml/models/_search
{
  "query": {
    "term": {
      "algorithm": {
        "value": "FIT_RCF"
      }
    }
  }
}

Response

{
    "took" : 8,
    "timed_out" : false,
    "_shards" : {
      "total" : 1,
      "successful" : 1,
      "skipped" : 0,
      "failed" : 0
    },
    "hits" : {
      "total" : {
        "value" : 2,
        "relation" : "eq"
      },
      "max_score" : 2.4159138,
      "hits" : [
        {
          "_index" : ".plugins-ml-model",
          "_id" : "-QkKJX8BvytMh9aUeuLD",
          "_version" : 1,
          "_seq_no" : 12,
          "_primary_term" : 15,
          "_score" : 2.4159138,
          "_source" : {
            "name" : "FIT_RCF",
            "version" : 1,
            "content" : "xxx",
            "algorithm" : "FIT_RCF"
          }
        },
        {
          "_index" : ".plugins-ml-model",
          "_id" : "OxkvHn8BNJ65KnIpck8x",
          "_version" : 1,
          "_seq_no" : 2,
          "_primary_term" : 8,
          "_score" : 2.4159138,
          "_source" : {
            "name" : "FIT_RCF",
            "version" : 1,
            "content" : "xxx",
            "algorithm" : "FIT_RCF"
          }
        }
      ]
    }
  }

Delete model

Deletes a model based on the model_id

DELETE /_plugins/_ml/models/<model_id>

The API returns the following:

{
  "_index" : ".plugins-ml-model",
  "_id" : "MzcIJX8BA7mbufL6DOwl",
  "_version" : 2,
  "result" : "deleted",
  "_shards" : {
    "total" : 2,
    "successful" : 2,
    "failed" : 0
  },
  "_seq_no" : 27,
  "_primary_term" : 18
}

Profile

Returns runtime information on ML tasks and models. This operation can help debug issues with models at runtime.

GET /_plugins/_ml/profile
GET /_plugins/_ml/profile/models
GET /_plugins/_ml/profile/tasks

Path parameters

Parameter Data type Description
model_id string Returns runtime data for a specific model. You can string together multiple model_ids to return multiple model profiles.
tasks string Returns runtime data for a specific task. You can string together multiple task_ids to return multiple task profiles.

Request fields

All profile body request fields are optional.

Field Data type Description
node_ids string Returns all tasks and profiles from a specific node.
model_ids string Returns runtime data for a specific model. You can string together multiple model_ids to return multiple model profiles.
task_ids string Returns runtime data for a specific task. You can string together multiple task_ids to return multiple task profiles.
return_all_tasks boolean Determines whether or not a request returns all tasks. When set to false task profiles are left out of the response.
return_all_models boolean Determines whether or not a profile request returns all models. When set to false model profiles are left out of the response.

Example: Return all tasks and models on a specific node

GET /_plugins/_ml/profile
{
  "node_ids": ["KzONM8c8T4Od-NoUANQNGg"],
  "return_all_tasks": true,
  "return_all_models": true
}

Response: Return all tasks and models on a specific node

{
  "nodes" : {
    "qTduw0FJTrmGrqMrxH0dcA" : { # node id
      "models" : {
        "WWQI44MBbzI2oUKAvNUt" : { # model id
          "worker_nodes" : [ # routing table
            "KzONM8c8T4Od-NoUANQNGg"
          ]
        }
      }
    },
...
    "KzONM8c8T4Od-NoUANQNGg" : { # node id
      "models" : {
        "WWQI44MBbzI2oUKAvNUt" : { # model id
          "model_state" : "LOADED", # model status
          "predictor" : "org.opensearch.ml.engine.algorithms.text_embedding.TextEmbeddingModel@592814c9",
          "worker_nodes" : [ # routing table
            "KzONM8c8T4Od-NoUANQNGg"
          ],
          "predict_request_stats" : { # predict request stats on this node
            "count" : 2, # total predict requests on this node
            "max" : 89.978681, # max latency in milliseconds
            "min" : 5.402,
            "average" : 47.6903405,
            "p50" : 47.6903405,
            "p90" : 81.5210129,
            "p99" : 89.13291418999998
          }
        }
      }
    },
...
}

Predict

ML Commons can predict new data with your trained model either from indexed data or a data frame. To use the Predict API, the model_id is required.

POST /_plugins/_ml/_predict/<algorithm_name>/<model_id>

Request

POST /_plugins/_ml/_predict/kmeans/<model-id>
{
    "input_query": {
        "_source": ["petal_length_in_cm", "petal_width_in_cm"],
        "size": 10000
    },
    "input_index": [
        "iris_data"
    ]
}

Response

{
  "status" : "COMPLETED",
  "prediction_result" : {
    "column_metas" : [
      {
        "name" : "ClusterID",
        "column_type" : "INTEGER"
      }
    ],
    "rows" : [
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 1
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 1
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      }
    ]
  }

Train and predict

Use to train and then immediately predict against the same training data set. Can only be used with unsupervised learning models and the following algorithms:

  • BATCH_RCF
  • FIT_RCF
  • kmeans

Example: Train and predict with indexed data

POST /_plugins/_ml/_train_predict/kmeans
{
    "parameters": {
        "centroids": 2,
        "iterations": 10,
        "distance_type": "COSINE"
    },
    "input_query": {
        "query": {
            "bool": {
                "filter": [
                    {
                        "range": {
                            "k1": {
                                "gte": 0
                            }
                        }
                    }
                ]
            }
        },
        "size": 10
    },
    "input_index": [
        "test_data"
    ]
}

Example: Train and predict with data directly

POST /_plugins/_ml/_train_predict/kmeans
{
    "parameters": {
        "centroids": 2,
        "iterations": 1,
        "distance_type": "EUCLIDEAN"
    },
    "input_data": {
        "column_metas": [
            {
                "name": "k1",
                "column_type": "DOUBLE"
            },
            {
                "name": "k2",
                "column_type": "DOUBLE"
            }
        ],
        "rows": [
            {
                "values": [
                    {
                        "column_type": "DOUBLE",
                        "value": 1.00
                    },
                    {
                        "column_type": "DOUBLE",
                        "value": 2.00
                    }
                ]
            },
            {
                "values": [
                    {
                        "column_type": "DOUBLE",
                        "value": 1.00
                    },
                    {
                        "column_type": "DOUBLE",
                        "value": 4.00
                    }
                ]
            },
            {
                "values": [
                    {
                        "column_type": "DOUBLE",
                        "value": 1.00
                    },
                    {
                        "column_type": "DOUBLE",
                        "value": 0.00
                    }
                ]
            },
            {
                "values": [
                    {
                        "column_type": "DOUBLE",
                        "value": 10.00
                    },
                    {
                        "column_type": "DOUBLE",
                        "value": 2.00
                    }
                ]
            },
            {
                "values": [
                    {
                        "column_type": "DOUBLE",
                        "value": 10.00
                    },
                    {
                        "column_type": "DOUBLE",
                        "value": 4.00
                    }
                ]
            },
            {
                "values": [
                    {
                        "column_type": "DOUBLE",
                        "value": 10.00
                    },
                    {
                        "column_type": "DOUBLE",
                        "value": 0.00
                    }
                ]
            }
        ]
    }
}

Response

{
  "status" : "COMPLETED",
  "prediction_result" : {
    "column_metas" : [
      {
        "name" : "ClusterID",
        "column_type" : "INTEGER"
      }
    ],
    "rows" : [
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 1
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 1
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 1
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      },
      {
        "values" : [
          {
            "column_type" : "INTEGER",
            "value" : 0
          }
        ]
      }
    ]
  }
}

Get task information

You can retrieve information about a task using the task_id.

GET /_plugins/_ml/tasks/<task_id>

The response includes information about the task.

{
  "model_id" : "l7lamX8BO5w8y8Ra2oty",
  "task_type" : "TRAINING",
  "function_name" : "KMEANS",
  "state" : "COMPLETED",
  "input_type" : "SEARCH_QUERY",
  "worker_node" : "54xOe0w8Qjyze00UuLDfdA",
  "create_time" : 1647545342556,
  "last_update_time" : 1647545342587,
  "is_async" : true
}

Search task

Search tasks based on parameters indicated in the request body.

GET /_plugins/_ml/tasks/_search
{query body}

Example: Search task which “function_name” is “KMEANS”

GET /_plugins/_ml/tasks/_search
{
  "query": {
    "bool": {
      "filter": [
        {
          "term": {
            "function_name": "KMEANS"
          }
        }
      ]
    }
  }
}

Response

{
  "took" : 12,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 2,
      "relation" : "eq"
    },
    "max_score" : 0.0,
    "hits" : [
      {
        "_index" : ".plugins-ml-task",
        "_id" : "_wnLJ38BvytMh9aUi-Ia",
        "_version" : 4,
        "_seq_no" : 29,
        "_primary_term" : 4,
        "_score" : 0.0,
        "_source" : {
          "last_update_time" : 1645640125267,
          "create_time" : 1645640125209,
          "is_async" : true,
          "function_name" : "KMEANS",
          "input_type" : "SEARCH_QUERY",
          "worker_node" : "jjqFrlW7QWmni1tRnb_7Dg",
          "state" : "COMPLETED",
          "model_id" : "AAnLJ38BvytMh9aUi-M2",
          "task_type" : "TRAINING"
        }
      },
      {
        "_index" : ".plugins-ml-task",
        "_id" : "wwRRLX8BydmmU1x6I-AI",
        "_version" : 3,
        "_seq_no" : 38,
        "_primary_term" : 7,
        "_score" : 0.0,
        "_source" : {
          "last_update_time" : 1645732766656,
          "create_time" : 1645732766472,
          "is_async" : true,
          "function_name" : "KMEANS",
          "input_type" : "SEARCH_QUERY",
          "worker_node" : "A_IiqoloTDK01uZvCjREaA",
          "state" : "COMPLETED",
          "model_id" : "xARRLX8BydmmU1x6I-CG",
          "task_type" : "TRAINING"
        }
      }
    ]
  }
}

Delete task

Delete a task based on the task_id.

ML Commons does not check the task status when running the Delete request. There is a risk that a currently running task could be deleted before the task completes. To check the status of a task, run GET /_plugins/_ml/tasks/<task_id> before task deletion.

DELETE /_plugins/_ml/tasks/{task_id}

The API returns the following:

{
  "_index" : ".plugins-ml-task",
  "_id" : "xQRYLX8BydmmU1x6nuD3",
  "_version" : 4,
  "result" : "deleted",
  "_shards" : {
    "total" : 2,
    "successful" : 2,
    "failed" : 0
  },
  "_seq_no" : 42,
  "_primary_term" : 7
}

Stats

Get statistics related to the number of tasks.

To receive all stats, use:

GET /_plugins/_ml/stats

To receive stats for a specific node, use:

GET /_plugins/_ml/<nodeId>/stats/

To receive stats for a specific node and return a specified stat, use:

GET /_plugins/_ml/<nodeId>/stats/<stat>

To receive information on a specific stat from all nodes, use:

GET /_plugins/_ml/stats/<stat>

Example: Get all stats

GET /_plugins/_ml/stats

Response

{
  "zbduvgCCSOeu6cfbQhTpnQ" : {
    "ml_executing_task_count" : 0
  },
  "54xOe0w8Qjyze00UuLDfdA" : {
    "ml_executing_task_count" : 0
  },
  "UJiykI7bTKiCpR-rqLYHyw" : {
    "ml_executing_task_count" : 0
  },
  "zj2_NgIbTP-StNlGZJlxdg" : {
    "ml_executing_task_count" : 0
  },
  "jjqFrlW7QWmni1tRnb_7Dg" : {
    "ml_executing_task_count" : 0
  },
  "3pSSjl5PSVqzv5-hBdFqyA" : {
    "ml_executing_task_count" : 0
  },
  "A_IiqoloTDK01uZvCjREaA" : {
    "ml_executing_task_count" : 0
  }
}

Execute

Some algorithms, such as Localization, don’t require trained models. You can run no-model-based algorithms using the execute API.

POST _plugins/_ml/_execute/<algorithm_name>

Example: Execute localization

The following example uses the Localization algorithm to find subset-level information for aggregate data (for example, aggregated over time) that demonstrates the activity of interest, such as spikes, drops, changes, or anomalies.

POST /_plugins/_ml/_execute/anomaly_localization
{
  "index_name": "rca-index",
  "attribute_field_names": [
    "attribute"
  ],
  "aggregations": [
    {
      "sum": {
        "sum": {
          "field": "value"
        }
      }
    }
  ],
  "time_field_name": "timestamp",
  "start_time": 1620630000000,
  "end_time": 1621234800000,
  "min_time_interval": 86400000,
  "num_outputs": 10
}

Upon execution, the API returns the following:

  "results" : [
    {
      "name" : "sum",
      "result" : {
        "buckets" : [
          {
            "start_time" : 1620630000000,
            "end_time" : 1620716400000,
            "overall_aggregate_value" : 65.0
          },
          {
            "start_time" : 1620716400000,
            "end_time" : 1620802800000,
            "overall_aggregate_value" : 75.0,
            "entities" : [
              {
                "key" : [
                  "attr0"
                ],
                "contribution_value" : 1.0,
                "base_value" : 2.0,
                "new_value" : 3.0
              },
              {
                "key" : [
                  "attr1"
                ],
                "contribution_value" : 1.0,
                "base_value" : 3.0,
                "new_value" : 4.0
              },
              {
                "key" : [
                  "attr2"
                ],
                "contribution_value" : 1.0,
                "base_value" : 4.0,
                "new_value" : 5.0
              },
              {
                "key" : [
                  "attr3"
                ],
                "contribution_value" : 1.0,
                "base_value" : 5.0,
                "new_value" : 6.0
              },
              {
                "key" : [
                  "attr4"
                ],
                "contribution_value" : 1.0,
                "base_value" : 6.0,
                "new_value" : 7.0
              },
              {
                "key" : [
                  "attr5"
                ],
                "contribution_value" : 1.0,
                "base_value" : 7.0,
                "new_value" : 8.0
              },
              {
                "key" : [
                  "attr6"
                ],
                "contribution_value" : 1.0,
                "base_value" : 8.0,
                "new_value" : 9.0
              },
              {
                "key" : [
                  "attr7"
                ],
                "contribution_value" : 1.0,
                "base_value" : 9.0,
                "new_value" : 10.0
              },
              {
                "key" : [
                  "attr8"
                ],
                "contribution_value" : 1.0,
                "base_value" : 10.0,
                "new_value" : 11.0
              },
              {
                "key" : [
                  "attr9"
                ],
                "contribution_value" : 1.0,
                "base_value" : 11.0,
                "new_value" : 12.0
              }
            ]
          },
          ...
        ]
      }
    }
  ]
}