Synonym token filter
The synonym
token filter allows you to map multiple terms to a single term or create equivalence groups between words, improving search flexibility.
Parameters
The synonym
token filter can be configured with the following parameters.
Parameter | Required/Optional | Data type | Description |
---|---|---|---|
synonyms | Either synonyms or synonyms_path must be specified | String | A list of synonym rules defined directly in the configuration. |
synonyms_path | Either synonyms or synonyms_path must be specified | String | The file path to a file containing synonym rules (either an absolute path or a path relative to the config directory). |
lenient | Optional | Boolean | Whether to ignore exceptions when loading the rule configurations. Default is false . |
format | Optional | String | Specifies the format used to determine how OpenSearch defines and interprets synonyms. Valid values are: - solr - wordnet . Default is solr . |
expand | Optional | Boolean | Whether to expand equivalent synonym rules. Default is false .For example: If synonyms are defined as "quick, fast" and expand is set to true , then the synonym rules are configured as follows:- quick => quick - quick => fast - fast => quick - fast => fast If expand is set to false , the synonym rules are configured as follows:- quick => quick - fast => quick |
Example: Solr format
The following example request creates a new index named my-synonym-index
and configures an analyzer with a synonym
filter. The filter is configured with the default solr
rule format:
PUT /my-synonym-index
{
"settings": {
"analysis": {
"filter": {
"my_synonym_filter": {
"type": "synonym",
"synonyms": [
"car, automobile",
"quick, fast, speedy",
"laptop => computer"
]
}
},
"analyzer": {
"my_synonym_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"my_synonym_filter"
]
}
}
}
}
}
Generated tokens
Use the following request to examine the tokens generated using the analyzer:
GET /my-synonym-index/_analyze
{
"analyzer": "my_synonym_analyzer",
"text": "The quick dog jumps into the car with a laptop"
}
The response contains the generated tokens:
{
"tokens": [
{
"token": "the",
"start_offset": 0,
"end_offset": 3,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "quick",
"start_offset": 4,
"end_offset": 9,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "fast",
"start_offset": 4,
"end_offset": 9,
"type": "SYNONYM",
"position": 1
},
{
"token": "speedy",
"start_offset": 4,
"end_offset": 9,
"type": "SYNONYM",
"position": 1
},
{
"token": "dog",
"start_offset": 10,
"end_offset": 13,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "jumps",
"start_offset": 14,
"end_offset": 19,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "into",
"start_offset": 20,
"end_offset": 24,
"type": "<ALPHANUM>",
"position": 4
},
{
"token": "the",
"start_offset": 25,
"end_offset": 28,
"type": "<ALPHANUM>",
"position": 5
},
{
"token": "car",
"start_offset": 29,
"end_offset": 32,
"type": "<ALPHANUM>",
"position": 6
},
{
"token": "automobile",
"start_offset": 29,
"end_offset": 32,
"type": "SYNONYM",
"position": 6
},
{
"token": "with",
"start_offset": 33,
"end_offset": 37,
"type": "<ALPHANUM>",
"position": 7
},
{
"token": "a",
"start_offset": 38,
"end_offset": 39,
"type": "<ALPHANUM>",
"position": 8
},
{
"token": "computer",
"start_offset": 40,
"end_offset": 46,
"type": "SYNONYM",
"position": 9
}
]
}
Example: WordNet format
The following example request creates a new index named my-wordnet-index
and configures an analyzer with a synonym
filter. The filter is configured with the wordnet
rule format:
PUT /my-wordnet-index
{
"settings": {
"analysis": {
"filter": {
"my_wordnet_synonym_filter": {
"type": "synonym",
"format": "wordnet",
"synonyms": [
"s(100000001,1,'fast',v,1,0).",
"s(100000001,2,'quick',v,1,0).",
"s(100000001,3,'swift',v,1,0)."
]
}
},
"analyzer": {
"my_wordnet_analyzer": {
"type": "custom",
"tokenizer": "standard",
"filter": [
"lowercase",
"my_wordnet_synonym_filter"
]
}
}
}
}
}
Generated tokens
Use the following request to examine the tokens generated using the analyzer:
GET /my-wordnet-index/_analyze
{
"analyzer": "my_wordnet_analyzer",
"text": "I have a fast car"
}
The response contains the generated tokens:
{
"tokens": [
{
"token": "i",
"start_offset": 0,
"end_offset": 1,
"type": "<ALPHANUM>",
"position": 0
},
{
"token": "have",
"start_offset": 2,
"end_offset": 6,
"type": "<ALPHANUM>",
"position": 1
},
{
"token": "a",
"start_offset": 7,
"end_offset": 8,
"type": "<ALPHANUM>",
"position": 2
},
{
"token": "fast",
"start_offset": 9,
"end_offset": 13,
"type": "<ALPHANUM>",
"position": 3
},
{
"token": "quick",
"start_offset": 9,
"end_offset": 13,
"type": "SYNONYM",
"position": 3
},
{
"token": "swift",
"start_offset": 9,
"end_offset": 13,
"type": "SYNONYM",
"position": 3
},
{
"token": "car",
"start_offset": 14,
"end_offset": 17,
"type": "<ALPHANUM>",
"position": 4
}
]
}